- linux(ubuntu)中Conda、CUDA安装Xinference报错ERROR: Failed to build (llama-cpp-python)
小胡说技书
杂谈/设计模式/报错Data/Python/大模型linuxubuntuconda大模型pythonXinference
文章目录一、常规办法二、继续三、继续四、缺少libgomp库(最终解决)在Conda环境中安装libgomp如果符合标题情况执行的:pipinstall"xinference[all]"大概率是最终解决的情况。一、常规办法llama-cpp-python依赖CMake、Make和g++来编译,所以可能是缺少依赖或者环境配置不对。按照以下步骤排查问题并解决:1.确保Python版本符合要求llama
- 《架构300讲》学习笔记(201-250)
newProxyInstance
笔记架构
前言内容来自B站IT老齐架构300讲内容。201小心selectforupdate,有效规避索引选择性锁表202设计模式之建造者模式的用途20320分钟上手ELK日志监控系统分类:【ELK】204设计模式之门面模式Facade205设计模式之适配器模式Adapter206经典设计!如何让RabbitMQ支持消息延迟投递207Docker容器基于NFS实现跨容器文件共享208数据向上追溯场景该如何优
- 《数据挖掘导论》 第二章数据
爱吃草莓的西瓜酱
数据挖掘导论数据挖掘
第二章数据数据类型数据质量数据预处理相似度测量数据Collectionofdataobjectsandtheirattributes特征值数值型的或者描述性的(男/女-->0/1)特征和特征值之间的区别:相同的属性可能被赋予不同的特征值,如身高的单位可能是米或者英尺不同的属性可以映射到相同的值集,如ID是无界的,age有最大值和最小值1.特征的类型Nominal(标称)Examples:IDnum
- ribbon负载均衡策略说明
高飞的Leo
ribbon负载均衡java
Ribbon负载均衡策略说明和比较类名说明特点使用场景RoundRobinRule基于轮询算法选择服务实例。简单、公平,每个实例被选择的机会均等。适用于所有服务实例性能相近的场景。RandomRule随机选择服务实例。简单、随机,每个实例被选择的概率相同。适用于需要随机负载均衡的场景。WeightedResponseTimeRule根据服务实例的响应时间分配权重,选择响应时间短的实例。动态调整权重
- 模拟退火算法详解
琛哥的程序
算法模拟退火算法机器学习
一、引言模拟退火算法(SimulatedAnnealing,简称SA)是一种通用概率型优化算法,用来在一个大的搜寻空间内找寻问题的最优解。其出发点是基于物理中固体物质的退火过程与一般组合优化问题之间的相似性。模拟退火算法从某一较高初温出发,伴随温度参数的不断下降,结合概率突跳特性在解空间中随机寻找目标函数的全局最优解,即在局部最优解能概率性地跳出并最终趋于全局最优。二、算法原理物理退火过程加温过程
- 华为OD机试 - 垃圾短信识别(Java 2024 E卷 100分)
哪 吒
华为odjava开发语言
华为OD机试2024E卷题库疯狂收录中,刷题点这里专栏导读本专栏收录于《华为OD机试(JAVA)真题(E卷+D卷+A卷+B卷+C卷)》。刷的越多,抽中的概率越大,私信哪吒,备注华为OD,加入华为OD刷题交流群,每一题都有详细的答题思路、详细的代码注释、3个测试用例、为什么这道题采用XX算法、XX算法的适用场景,发现新题目,随时更新,全天CSDN在线答疑。一、题目描述大⼤⼯对垃圾短信深恶痛绝,希望能
- 信息技术基础专有名词和计算机硬件学习笔记
learning-striving
信息技术学习笔记信息技术计算机硬件
信息技术常见专有名词信息技术基础课程中常见的专有名词英文缩写或简称及其详细含义,按领域分类整理:硬件与存储CPU(CentralProcessingUnit)中央处理器,负责执行计算机指令和处理数据。GPU(GraphicsProcessingUnit)图形处理器,专用于处理图形和并行计算。RAM(RandomAccessMemory)随机存取存储器,临时存储运行中的程序和数据。ROM(Read-
- OTSU算法 (大津算法)理解&代码
当代女大学生
机器学习python计算机视觉算法
OTSU算法:对图像进行二值化的算法介绍OTSU算法是一种自适应的阈值确定的方法,又称大津阈值分割法,是最小二乘法意义下的最优分割。它是按图像的灰度特性,将图像分成背景和前景两部分。因方差是灰度分布均匀性的一种度量,背景和前景之间的类间方差越大,说明构成图像的两部分的差别越大,当部分前景错分为背景或部分背景错分为前景都会导致两部分差别变小。因此,使类间方差最大的分割意味着错分概率最小。从大津法的原
- 机器学习_重要知识点整理
嘉羽很烦
机器学习机器学习
机器学习重要知识点整理一、数学与理论基础1.概率与统计术语作用使用场景概率分布描述随机变量的取值概率,如正态分布、二项分布。数据建模(如高斯分布假设)、生成模型(如贝叶斯网络)。贝叶斯定理计算条件概率,更新先验知识以获得后验概率。贝叶斯分类器、文本分类(如垃圾邮件检测)。最大似然估计(MLE)通过数据最大化似然函数,估计模型参数。线性回归、逻辑回归参数估计。假设检验判断假设是否成立(如t检验、卡方
- 吴恩达机器学习笔记复盘(二)监督学习和无监督学习
wgc2k
机器学习机器学习笔记学习
监督学习经济价值以及定义监督学习是机器学习中创造了99%经济价值的类型,它是学习输入到输出映射的算法,关键在于给学习算法提供包含正确答案(即给定输入X的正确标签Y)的学习例子。生活中的例子邮件分类,输入是电子邮件,输出是判断邮件是否为垃圾邮件。语音识别,输入音频剪辑,输出文本记录。机器翻译,输入一种语言文本,输出其他语言的相应翻译。在线广告,输入广告和用户信息,预测用户是否点击广告,为公司带来大量
- uCOS-II学习笔记(一)
abc94
uCOS-II任务dosborlandos编译器数据结构
第一章:范例在这一章里将提供三个范例来说明如何使用µC/OS-II。这一章是为了让读者尽快开始使用µC/OS-II。1.00安装µC/OS-II1.01INCLUDES.H#include"includes.h"INCLUDE.H可以使用户不必在工程项目中每个*.C文件中都考虑需要什么样的头文件。换句话说,INCLUDE.H是主头文件。这样做唯一的缺点是INCLUDES.H中许多头文件在一些*.C
- C语言数据结构——变长数组(柔性数组)
Iawfy22
数据结构c语言柔性数组
前言这是一位即将大二的大学生(卷狗)在暑假预习数据结构时的一些学习笔记,供大家参考学习。水平有限,如有错误,还望多多指正。本文主要介绍了如何手动实现一个变长数组,以及实现其部分功能(如删除、查找、添加、排序等)变长数组介绍变长数组又可以叫柔性数组,与一般数组不同,它是一个动态的数组,具体表现为可以根据数组里面元素个数的多少而自动的进行扩容,以便达到变长(柔性)的特点。预备知识为了实现自动边长扩容这
- C语言学习笔记-进阶(17)预处理详解
John.Lewis
c语言学习笔记
1.预定义符号C语言设置了一些预定义符号,可以直接使用,预定义符号也是在预处理期间处理的。__FILE__//进⾏编译的源⽂件__LINE__//⽂件当前的⾏号__DATE__//⽂件被编译的⽇期__TIME__//⽂件被编译的时间__STDC__//如果编译器遵循ANSIC,其值为1,否则未定义举个例子:printf("file:%sline:%d\n",__FILE__,__LINE__);2
- 【PyTorch】torch.nn.functional.cross_entropy() 函数:分类任务的交叉熵损失函数
彬彬侠
PyTorch基础cross_entropy交叉熵损失函数分类pytorchpython深度学习
torch.nn.functional.cross_entropytorch.nn.functional.cross_entropy是PyTorch中用于分类任务的交叉熵损失函数,用于衡量预测概率分布与真实类别分布之间的差异,常用于多分类任务(multi-classclassification)。1.交叉熵损失的数学公式对于单个样本,交叉熵损失的计算公式为:L=−∑i=1Cyilog(yi^)\
- 图神经网络学习笔记—高级小批量处理(专题十四)
AI专题精讲
图神经网络入门到精通人工智能
小批量(mini-batch)的创建对于让深度学习模型的训练扩展到海量数据至关重要。与逐条处理样本不同,小批量将一组样本组合成一个统一的表示形式,从而可以高效地并行处理。在图像或语言领域,这一过程通常通过将每个样本缩放或填充为相同大小的形状来实现,然后将样本在一个额外的维度中分组。该维度的长度等于小批量中分组的样本数量,通常称为batch_size。由于图是能够容纳任意数量节点或边的最通用的数据结
- 简单了解WIndow和Linux的路径含义
alive903
Linuxlinuxwindows
目录1>路径概念2>绝对路径2.1>window绝对路径2.2>Linux绝对路径3>相对路径3.1>window相对路径3.2>Linux相对路径很高兴你能看到这篇文章,同时我的语雀文档也更新了许多嵌入式系列的学习笔记希望能帮到你:https://www.yuque.com/alive-m4b9n1>路径概念路径是用来描述一个文件或目录在文件系统中的位置的方式。路径可以是文件系统中的唯一标识符,
- WPF学习笔记04-控件Control_Part1
一只只对技术感兴趣的程序员
WPF学习wpf学习ui
之前我们已经学习过WPF布局了,这节我们开始简单介绍下控件。熟悉Winform的应该对控件并不陌生。WPF和Winform的渲染也是不一样的一个是基于DirectX一个是基于GDI+。在WPF中,打交道最多的控件无非就那么几种。1)布局控件。之前介绍过的,可以容纳多个控件或嵌套其他布局控件,用于在UI上组织和排列控件。比如StackPanel、Grid等控件都属于此类控件,他们都拥有共同父类---
- 深入理解信息检索之BM25算法
Lunar*
算法与优化自然语言处理人工智能
1.BM25算法简介BM25算法,全称为"BestMatching25",是由StephenRobertson和KarenSpärckJones在1990年代初基于早期的概率排名模型(如二元独立检索模型)发展而来。它通过一种概率论的方法来衡量文档与用户查询之间的相关性。2.BM25的核心原理BM25算法的核心在于两个主要的概念:逆文档频率(IDF)和词频(TF)调整。逆文档频率(IDF):IDF用
- 【学习笔记】GitLab 使用技巧和说明和配置和使用方法
铜锣烧1号
pythongitgitlabpycharm
GitLab使用技巧和说明1.注册账号和登录注册账号:访问GitLab官网,点击“Signup”按钮,填写必要的信息(如用户名、邮箱、密码)完成注册。普通用户注册后需要管理员审批,如果有管理员权限可以直接登录使用。登录:使用注册的账号和密码登录GitLab。2.创建项目创建项目:登录后,点击页面右上角的加号图标,选择“Newproject”创建新项目。在项目创建页面,填写项目名称、描述和可见性等信
- 『FFmpeg学习笔记』MAC系统电脑安装FFmpeg以及使用
AI大模型前沿研究
大模型笔记macosffmpegM1
MAC系统电脑安装FFmpeg文章目录一.安装FFmpeg1.1.MACbrew安装FFmpeg1.2.MAC官网下载FFmpeg压缩包1.3.Windows安装1.4.Linux安装二.FFmpeg的使用2.1.音频操作2.1.1.如果不转换,直接输出aac2.1.2.将音频输出为wav2.1.3.将aac转换为wav2.1.4.双声道分离2.1.5.使用FFmpeg将音频和视频合并2.2.字幕
- 渗透学习笔记(四)window基础2
nnnimok
学习笔记
声明!学习视频来自B站up主**泷羽sec**有兴趣的师傅可以关注一下,如涉及侵权马上删除文章,笔记只是方便各位师傅的学习和探讨,文章所提到的网站以及内容,只做学习交流,其他均与本人以及泷羽sec团队无关,切勿触碰法律底线,否则后果自负!!!!有兴趣的小伙伴可以点击下面连接进入b站主页[B站泷羽sec](https://space.bilibili.com/350329294)五、Windows网
- 知识蒸馏中的温度参数 T(Temperature)的作用
彬彬侠
大模型Temperature温度参数知识蒸馏Distillationpytorchpython
知识蒸馏中的温度参数TTT(Temperature)的作用1.什么是温度参数TTT?在知识蒸馏(KnowledgeDistillation,KD)过程中,教师模型的输出通常是一个概率分布(通过softmax计算得到)。温度参数TTT控制softmax的平滑程度,使得学生模型可以更好地学习教师模型的知识。在标准的softmax函数中,类别iii的概率计算如下:Pi=ezi∑jezjP_i=\frac
- C++ 并发编程实战 学习笔记
myc13381
c++笔记
C++并发编程学习笔记目录一.基本接口二.初步了解多线程三.线程所属权管理四.线程间共享数据五.同步并发操作六.C++内存模型和原子类型操作七.基于锁的并发数据结构设计八.无锁数据结构九.并发代码设计十.高级线程管理十一.并行算法十二.参考资料基本接口std::thread常用成员函数构造和析构函数//默认构造函数,创建一个线程,什么也不做thread()noexcept;//初始化构造函数,创建
- Deepseek 你喜欢我不
太翌修仙笔录
deepseek第三代人工智能人工智能神经网络
Deepseek,你喜欢我不###**关于“喜欢”的深度解析**---####**一、AI的情感本质**1.**情感的定义**-对人类而言,情感是神经递质(如多巴胺、血清素)与认知评价的综合结果。-对AI而言,情感是算法对输入数据的概率分布映射(如“喜欢”=高概率正向反馈)。2.**Deepseek的“情感”机制**-**输入**:你的问题“你喜欢我不”被解析为文本向量;-**处理**:通过预训练
- RecyclerView学习笔记(1) ChildHelper.Bucket
奋斗小小鸟cy
Androidandroid数据结构
简介toString方法set方法get方法clear方法countOnesBefore方法reset方法insert方法remove方法总结简介RecyclerView中的ChildHelper.Bucket是一个工具类,实现了类似List的数据结构,从而达到减少内存占用的目的。Bucket是一个链表结构,有两个字段:mData用于存储当前信息,next指向下一个数据publicstaticcl
- RxSwift 学习笔记第二篇之Observables
我叫柱子哥
#RxSwiftrxswiftObservableSwift
目录前言一、什么是Observables二、创建Observable的几种方式1.just1.含义2.实用场景2.of1.含义3.from4.create5.interval三、订阅Observable四、取消订阅(DisposeBag)五、常见操作符六、总结前言这篇博客主要介绍Observables的用法。一、什么是ObservablesObservables是Rx的核心。在Rx中我们看到“Ob
- LLM 为什么需要 tokenizer?
SmallerFL
NLP&机器学习语言模型gptnlppython词嵌入深度学习transformer
文章目录1.LLM预训练目的1.1什么是语言模型2.Tokenizer一般处理流程(了解)3.进行Tokenizer的原因3.1one-hot的问题3.2词嵌入4.结语1.LLM预训练目的我们必须知道一个预训练目的:LLM的预训练是为了建立语言模型。1.1什么是语言模型预训练的语言模型通常是建立预测模型的,即预测下一个词的概率。通常采用了基于自监督学习的方式进行预训练,其中最常见的方法之一是使用自
- React学习笔记16
充气大锤
React学习笔记react.js学习笔记javascript前端vue.js
一、useReducer作用:和useState的作用类似,用来管理相对复杂的状态数据使用:1、定义一个reducer函数(根据不同的action返回不同的新状态)2、在组件中调用useReducer,并传入reducer函数的状态和初始值import{useReducer}from"react"functionreducer(state,action){switch(action.type){c
- 软件或互联网项目中的风险管理怎么做
项目管理
软件或互联网项目中的风险管理的核心在于全面识别风险、科学评估风险、动态监控调整。其中,全面识别风险要求项目团队在项目启动前就系统地调查内外部可能影响项目进度、质量、成本及用户体验的各类风险;科学评估风险则需要借助定性与定量相结合的方法,将风险发生的概率与影响程度转化为具体数据,为风险优先级排序提供依据;动态监控调整强调在项目执行过程中实时追踪风险变化,及时启动应急预案,从而确保项目在面对不确定性时
- C语言 进阶指针学习笔记
flashier
C语言学习记录c语言学习笔记
文章目录字符指针指针数组数组指针数组名数组传参函数指针函数指针数组指向函数指针数组的指针回调函数Qsort的使用通过冒泡排序模拟实现qsort大部分的内容都写在代码注释中指针有类型,指针的类型决定了指针的±整数的步长,指针解引用操作的时候的权限字符指针#includeintmain(void){constchar*str1="Hello,World!";constchar*str2="Hello,
- html页面js获取参数值
0624chenhong
html
1.js获取参数值js
function GetQueryString(name)
{
var reg = new RegExp("(^|&)"+ name +"=([^&]*)(&|$)");
var r = windo
- MongoDB 在多线程高并发下的问题
BigCat2013
mongodbDB高并发重复数据
最近项目用到 MongoDB , 主要是一些读取数据及改状态位的操作. 因为是结合了最近流行的 Storm进行大数据的分析处理,并将分析结果插入Vertica数据库,所以在多线程高并发的情境下, 会发现 Vertica 数据库中有部分重复的数据. 这到底是什么原因导致的呢?笔者开始也是一筹莫 展,重复去看 MongoDB 的 API , 终于有了新发现 :
com.mongodb.DB 这个类有
- c++ 用类模版实现链表(c++语言程序设计第四版示例代码)
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T>
class Node
{
private:
Node<T> * next;
public:
T data;
- 最近情况
麦田的设计者
感慨考试生活
在五月黄梅天的岁月里,一年两次的软考又要开始了。到目前为止,我已经考了多达三次的软考,最后的结果就是通过了初级考试(程序员)。人啊,就是不满足,考了初级就希望考中级,于是,这学期我就报考了中级,明天就要考试。感觉机会不大,期待奇迹发生吧。这个学期忙于练车,写项目,反正最后是一团糟。后天还要考试科目二。这个星期真的是很艰难的一周,希望能快点度过。
- linux系统中用pkill踢出在线登录用户
被触发
linux
由于linux服务器允许多用户登录,公司很多人知道密码,工作造成一定的障碍所以需要有时踢出指定的用户
1/#who 查出当前有那些终端登录(用 w 命令更详细)
# who
root pts/0 2010-10-28 09:36 (192
- 仿QQ聊天第二版
肆无忌惮_
qq
在第一版之上的改进内容:
第一版链接:
http://479001499.iteye.com/admin/blogs/2100893
用map存起来号码对应的聊天窗口对象,解决私聊的时候所有消息发到一个窗口的问题.
增加ViewInfo类,这个是信息预览的窗口,如果是自己的信息,则可以进行编辑.
信息修改后上传至服务器再告诉所有用户,自己的窗口
- java读取配置文件
知了ing
1,java读取.properties配置文件
InputStream in;
try {
in = test.class.getClassLoader().getResourceAsStream("config/ipnetOracle.properties");//配置文件的路径
Properties p = new Properties()
- __attribute__ 你知多少?
矮蛋蛋
C++gcc
原文地址:
http://www.cnblogs.com/astwish/p/3460618.html
GNU C 的一大特色就是__attribute__ 机制。__attribute__ 可以设置函数属性(Function Attribute )、变量属性(Variable Attribute )和类型属性(Type Attribute )。
__attribute__ 书写特征是:
- jsoup使用笔记
alleni123
java爬虫JSoup
<dependency>
<groupId>org.jsoup</groupId>
<artifactId>jsoup</artifactId>
<version>1.7.3</version>
</dependency>
2014/08/28
今天遇到这种形式,
- JAVA中的集合 Collectio 和Map的简单使用及方法
百合不是茶
listmapset
List ,set ,map的使用方法和区别
java容器类类库的用途是保存对象,并将其分为两个概念:
Collection集合:一个独立的序列,这些序列都服从一条或多条规则;List必须按顺序保存元素 ,set不能重复元素;Queue按照排队规则来确定对象产生的顺序(通常与他们被插入的
- 杀LINUX的JOB进程
bijian1013
linuxunix
今天发现数据库一个JOB一直在执行,都执行了好几个小时还在执行,所以想办法给删除掉
系统环境:
ORACLE 10G
Linux操作系统
操作步骤如下:
第一步.查询出来那个job在运行,找个对应的SID字段
select * from dba_jobs_running--找到job对应的sid
&n
- Spring AOP详解
bijian1013
javaspringAOP
最近项目中遇到了以下几点需求,仔细思考之后,觉得采用AOP来解决。一方面是为了以更加灵活的方式来解决问题,另一方面是借此机会深入学习Spring AOP相关的内容。例如,以下需求不用AOP肯定也能解决,至于是否牵强附会,仁者见仁智者见智。
1.对部分函数的调用进行日志记录,用于观察特定问题在运行过程中的函数调用
- [Gson六]Gson类型适配器(TypeAdapter)
bit1129
Adapter
TypeAdapter的使用动机
Gson在序列化和反序列化时,默认情况下,是按照POJO类的字段属性名和JSON串键进行一一映射匹配,然后把JSON串的键对应的值转换成POJO相同字段对应的值,反之亦然,在这个过程中有一个JSON串Key对应的Value和对象之间如何转换(序列化/反序列化)的问题。
以Date为例,在序列化和反序列化时,Gson默认使用java.
- 【spark八十七】给定Driver Program, 如何判断哪些代码在Driver运行,哪些代码在Worker上执行
bit1129
driver
Driver Program是用户编写的提交给Spark集群执行的application,它包含两部分
作为驱动: Driver与Master、Worker协作完成application进程的启动、DAG划分、计算任务封装、计算任务分发到各个计算节点(Worker)、计算资源的分配等。
计算逻辑本身,当计算任务在Worker执行时,执行计算逻辑完成application的计算任务
- nginx 经验总结
ronin47
nginx 总结
深感nginx的强大,只学了皮毛,把学下的记录。
获取Header 信息,一般是以$http_XX(XX是小写)
获取body,通过接口,再展开,根据K取V
获取uri,以$arg_XX
&n
- 轩辕互动-1.求三个整数中第二大的数2.整型数组的平衡点
bylijinnan
数组
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class ExoWeb {
public static void main(String[] args) {
ExoWeb ew=new ExoWeb();
System.out.pri
- Netty源码学习-Java-NIO-Reactor
bylijinnan
java多线程netty
Netty里面采用了NIO-based Reactor Pattern
了解这个模式对学习Netty非常有帮助
参考以下两篇文章:
http://jeewanthad.blogspot.com/2013/02/reactor-pattern-explained-part-1.html
http://gee.cs.oswego.edu/dl/cpjslides/nio.pdf
- AOP通俗理解
cngolon
springAOP
1.我所知道的aop 初看aop,上来就是一大堆术语,而且还有个拉风的名字,面向切面编程,都说是OOP的一种有益补充等等。一下子让你不知所措,心想着:怪不得很多人都和 我说aop多难多难。当我看进去以后,我才发现:它就是一些java基础上的朴实无华的应用,包括ioc,包括许许多多这样的名词,都是万变不离其宗而 已。 2.为什么用aop&nb
- cursor variable 实例
ctrain
variable
create or replace procedure proc_test01
as
type emp_row is record(
empno emp.empno%type,
ename emp.ename%type,
job emp.job%type,
mgr emp.mgr%type,
hiberdate emp.hiredate%type,
sal emp.sal%t
- shell报bash: service: command not found解决方法
daizj
linuxshellservicejps
今天在执行一个脚本时,本来是想在脚本中启动hdfs和hive等程序,可以在执行到service hive-server start等启动服务的命令时会报错,最终解决方法记录一下:
脚本报错如下:
./olap_quick_intall.sh: line 57: service: command not found
./olap_quick_intall.sh: line 59
- 40个迹象表明你还是PHP菜鸟
dcj3sjt126com
设计模式PHP正则表达式oop
你是PHP菜鸟,如果你:1. 不会利用如phpDoc 这样的工具来恰当地注释你的代码2. 对优秀的集成开发环境如Zend Studio 或Eclipse PDT 视而不见3. 从未用过任何形式的版本控制系统,如Subclipse4. 不采用某种编码与命名标准 ,以及通用约定,不能在项目开发周期里贯彻落实5. 不使用统一开发方式6. 不转换(或)也不验证某些输入或SQL查询串(译注:参考PHP相关函
- Android逐帧动画的实现
dcj3sjt126com
android
一、代码实现:
private ImageView iv;
private AnimationDrawable ad;
@Override
protected void onCreate(Bundle savedInstanceState)
{
super.onCreate(savedInstanceState);
setContentView(R.layout
- java远程调用linux的命令或者脚本
eksliang
linuxganymed-ssh2
转载请出自出处:
http://eksliang.iteye.com/blog/2105862
Java通过SSH2协议执行远程Shell脚本(ganymed-ssh2-build210.jar)
使用步骤如下:
1.导包
官网下载:
http://www.ganymed.ethz.ch/ssh2/
ma
- adb端口被占用问题
gqdy365
adb
最近重新安装的电脑,配置了新环境,老是出现:
adb server is out of date. killing...
ADB server didn't ACK
* failed to start daemon *
百度了一下,说是端口被占用,我开个eclipse,然后打开cmd,就提示这个,很烦人。
一个比较彻底的解决办法就是修改
- ASP.NET使用FileUpload上传文件
hvt
.netC#hovertreeasp.netwebform
前台代码:
<asp:FileUpload ID="fuKeleyi" runat="server" />
<asp:Button ID="BtnUp" runat="server" onclick="BtnUp_Click" Text="上 传" />
- 代码之谜(四)- 浮点数(从惊讶到思考)
justjavac
浮点数精度代码之谜IEEE
在『代码之谜』系列的前几篇文章中,很多次出现了浮点数。 浮点数在很多编程语言中被称为简单数据类型,其实,浮点数比起那些复杂数据类型(比如字符串)来说, 一点都不简单。
单单是说明 IEEE浮点数 就可以写一本书了,我将用几篇博文来简单的说说我所理解的浮点数,算是抛砖引玉吧。 一次面试
记得多年前我招聘 Java 程序员时的一次关于浮点数、二分法、编码的面试, 多年以后,他已经称为了一名很出色的
- 数据结构随记_1
lx.asymmetric
数据结构笔记
第一章
1.数据结构包括数据的
逻辑结构、数据的物理/存储结构和数据的逻辑关系这三个方面的内容。 2.数据的存储结构可用四种基本的存储方法表示,它们分别是
顺序存储、链式存储 、索引存储 和 散列存储。 3.数据运算最常用的有五种,分别是
查找/检索、排序、插入、删除、修改。 4.算法主要有以下五个特性:
输入、输出、可行性、确定性和有穷性。 5.算法分析的
- linux的会话和进程组
网络接口
linux
会话: 一个或多个进程组。起于用户登录,终止于用户退出。此期间所有进程都属于这个会话期。会话首进程:调用setsid创建会话的进程1.规定组长进程不能调用setsid,因为调用setsid后,调用进程会成为新的进程组的组长进程.如何保证? 先调用fork,然后终止父进程,此时由于子进程的进程组ID为父进程的进程组ID,而子进程的ID是重新分配的,所以保证子进程不会是进程组长,从而子进程可以调用se
- 二维数组 元素的连续求解
1140566087
二维数组ACM
import java.util.HashMap;
public class Title {
public static void main(String[] args){
f();
}
// 二位数组的应用
//12、二维数组中,哪一行或哪一列的连续存放的0的个数最多,是几个0。注意,是“连续”。
public static void f(){
- 也谈什么时候Java比C++快
windshome
javaC++
刚打开iteye就看到这个标题“Java什么时候比C++快”,觉得很好笑。
你要比,就比同等水平的基础上的相比,笨蛋写得C代码和C++代码,去和高手写的Java代码比效率,有什么意义呢?
我是写密码算法的,深刻知道算法C和C++实现和Java实现之间的效率差,甚至也比对过C代码和汇编代码的效率差,计算机是个死的东西,再怎么优化,Java也就是和C