动手学数据分析task1打卡

**复习:**这门课程得主要目的是通过真实的数据,以实战的方式了解数据分析的流程和熟悉数据分析python的基本操作。知道了课程的目的之后,我们接下来我们要正式的开始数据分析的实战教学,完成kaggle上泰坦尼克的任务,实战数据分析全流程。
这里有两份资料:
教材《Python for Data Analysis》和 baidu.com &
google.com(善用搜索引擎)

1 第一章:数据载入及初步观察

1.1 载入数据

数据集下载 https://www.kaggle.com/c/titanic/overview

1.1.1 任务一:导入numpy和pandas

#写入代码
import numpy as np
import pandas as pd
import os

1.1.2 任务二:载入数据

(1) 使用相对路径载入数据
(2) 使用绝对路径载入数据

#写入代码
print(os.getcwd())
df = pd.read_csv("train.csv")
df.head(3)
E:\jupyter_notebook\动手学数据分析-组队学习版\第一单元项目集合
PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
0 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 0 PC 17599 71.2833 C85 C
2 3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S
#写入代码
df = pd.read_csv("E:/jupyter_notebook/动手学数据分析-组队学习版/第一单元项目集合/train.csv")
df.head(3)
PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
0 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 0 PC 17599 71.2833 C85 C
2 3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S

【提示】相对路径载入报错时,尝试使用os.getcwd()查看当前工作目录。

1.1.3 任务三:每1000行为一个数据模块,逐块读取

#写入代码
df = pd.read_csv("train.csv",chunksize=1000)
df

【思考】什么是逐块读取?为什么要逐块读取呢?

【答】在处理很⼤的⽂件时,可将大文件拆分成小块按块读入后,这样可减少内存的存储与计算资源。数据的处理和清洗经常使用分块的方式处理,这能大大降低内存的使用量,但相比会更耗时一些。

1.1.4 任务四:将表头改成中文,索引改为乘客ID [对于某些英文资料,我们可以通过翻译来更直观的熟悉我们的数据]

PassengerId => 乘客ID
Survived => 是否幸存
Pclass => 乘客等级(1/2/3等舱位)
Name => 乘客姓名
Sex => 性别
Age => 年龄
SibSp => 堂兄弟/妹个数
Parch => 父母与小孩个数
Ticket => 船票信息
Fare => 票价
Cabin => 客舱
Embarked => 登船港口

#写入代码
df = pd.read_csv("train.csv",names=["乘客ID","是否幸存","乘客等级"," 乘客姓名","性别","年龄","堂兄弟/妹个数","父母小孩个数",
                    "船票信息","票价","客舱","登船港口"],index_col="乘客ID",header=0)
df.head()
是否幸存 乘客等级 乘客姓名 性别 年龄 堂兄弟/妹个数 父母小孩个数 船票信息 票价 客舱 登船港口
乘客ID
1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S
2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 0 PC 17599 71.2833 C85 C
3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S
4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 0 113803 53.1000 C123 S
5 0 3 Allen, Mr. William Henry male 35.0 0 0 373450 8.0500 NaN S

【思考】所谓将表头改为中文其中一个思路是:将英文额度表头替换成中文。还有其他的方法吗?

1.2 初步观察

导入数据后,你可能要对数据的整体结构和样例进行概览,比如说,数据大小、有多少列,各列都是什么格式的,是否包含null等

1.2.1 任务一:查看数据的基本信息

#写入代码
df.info()


Int64Index: 891 entries, 1 to 891
Data columns (total 11 columns):
是否幸存       891 non-null int64
乘客等级       891 non-null int64
 乘客姓名      891 non-null object
性别         891 non-null object
年龄         714 non-null float64
堂兄弟/妹个数    891 non-null int64
父母小孩个数     891 non-null int64
船票信息       891 non-null object
票价         891 non-null float64
客舱         204 non-null object
登船港口       889 non-null object
dtypes: float64(2), int64(4), object(5)
memory usage: 83.5+ KB

1.2.2 任务二:观察表格前10行的数据和后15行的数据

#写入代码
df.head(10)

是否幸存 乘客等级 乘客姓名 性别 年龄 堂兄弟/妹个数 父母小孩个数 船票信息 票价 客舱 登船港口
乘客ID
1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S
2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 0 PC 17599 71.2833 C85 C
3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S
4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 0 113803 53.1000 C123 S
5 0 3 Allen, Mr. William Henry male 35.0 0 0 373450 8.0500 NaN S
6 0 3 Moran, Mr. James male NaN 0 0 330877 8.4583 NaN Q
7 0 1 McCarthy, Mr. Timothy J male 54.0 0 0 17463 51.8625 E46 S
8 0 3 Palsson, Master. Gosta Leonard male 2.0 3 1 349909 21.0750 NaN S
9 1 3 Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg) female 27.0 0 2 347742 11.1333 NaN S
10 1 2 Nasser, Mrs. Nicholas (Adele Achem) female 14.0 1 0 237736 30.0708 NaN C
#写入代码
df.tail(15)

是否幸存 乘客等级 乘客姓名 性别 年龄 堂兄弟/妹个数 父母小孩个数 船票信息 票价 客舱 登船港口
乘客ID
877 0 3 Gustafsson, Mr. Alfred Ossian male 20.0 0 0 7534 9.8458 NaN S
878 0 3 Petroff, Mr. Nedelio male 19.0 0 0 349212 7.8958 NaN S
879 0 3 Laleff, Mr. Kristo male NaN 0 0 349217 7.8958 NaN S
880 1 1 Potter, Mrs. Thomas Jr (Lily Alexenia Wilson) female 56.0 0 1 11767 83.1583 C50 C
881 1 2 Shelley, Mrs. William (Imanita Parrish Hall) female 25.0 0 1 230433 26.0000 NaN S
882 0 3 Markun, Mr. Johann male 33.0 0 0 349257 7.8958 NaN S
883 0 3 Dahlberg, Miss. Gerda Ulrika female 22.0 0 0 7552 10.5167 NaN S
884 0 2 Banfield, Mr. Frederick James male 28.0 0 0 C.A./SOTON 34068 10.5000 NaN S
885 0 3 Sutehall, Mr. Henry Jr male 25.0 0 0 SOTON/OQ 392076 7.0500 NaN S
886 0 3 Rice, Mrs. William (Margaret Norton) female 39.0 0 5 382652 29.1250 NaN Q
887 0 2 Montvila, Rev. Juozas male 27.0 0 0 211536 13.0000 NaN S
888 1 1 Graham, Miss. Margaret Edith female 19.0 0 0 112053 30.0000 B42 S
889 0 3 Johnston, Miss. Catherine Helen "Carrie" female NaN 1 2 W./C. 6607 23.4500 NaN S
890 1 1 Behr, Mr. Karl Howell male 26.0 0 0 111369 30.0000 C148 C
891 0 3 Dooley, Mr. Patrick male 32.0 0 0 370376 7.7500 NaN Q

1.2.4 任务三:判断数据是否为空,为空的地方返回True,其余地方返回False

#写入代码
df.isnull().head()

是否幸存 乘客等级 乘客姓名 性别 年龄 堂兄弟/妹个数 父母小孩个数 船票信息 票价 客舱 登船港口
乘客ID
1 False False False False False False False False False True False
2 False False False False False False False False False False False
3 False False False False False False False False False True False
4 False False False False False False False False False False False
5 False False False False False False False False False True False

1.3 保存数据

1.3.1 任务一:将你加载并做出改变的数据,在工作目录下保存为一个新文件train_chinese.csv

#写入代码
df.to_csv("train_chinesze.csv")

【总结】数据的加载以及入门,接下来就要接触数据本身的运算,我们将主要掌握numpy和pandas在工作和项目场景的运用。

复习:数据分析的第一步,加载数据我们已经学习完毕了。当数据展现在我们面前的时候,我们所要做的第一步就是认识他,今天我们要学习的就是了解字段含义以及初步观察数据

2 第一章:pandas基础

1.4 知道你的数据叫什么

我们学习pandas的基础操作,那么上一节通过pandas加载之后的数据,其数据类型是什么呢?

1.4.1 任务一:pandas中有两个数据类型DateFrame和Series,通过查找简单了解他们。然后自己写一个关于这两个数据类型的小例子[开放题]

关于这两个数据类型的区别具体可以参考对pandas中两种数据类型Series和DataFrame的区别详解

import numpy as np
import pandas as pd
sdata = {
     'Ohio': 35000, 'Texas': 71000, 'Oregon': 16000, 'Utah': 5000}
example_1 = pd.Series(sdata)
example_1
Ohio      35000
Texas     71000
Oregon    16000
Utah       5000
dtype: int64
data = {
     'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada', 'Nevada'],
        'year': [2000, 2001, 2002, 2001, 2002, 2003],'pop': [1.5, 1.7, 3.6, 2.4, 2.9, 3.2]}
example_2 = pd.DataFrame(data)
example_2
state year pop
0 Ohio 2000 1.5
1 Ohio 2001 1.7
2 Ohio 2002 3.6
3 Nevada 2001 2.4
4 Nevada 2002 2.9
5 Nevada 2003 3.2

1.4.2 任务二:根据上节课的方法载入"train.csv"文件

df = pd.read_csv('train.csv')
df.head(3)
PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
0 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 0 PC 17599 71.2833 C85 C
2 3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S

也可以加载上一节课保存的"train_chinese.csv"文件。

1.4.3 任务三:查看DataFrame数据的每列的项

df.columns
Index(['PassengerId', 'Survived', 'Pclass', 'Name', 'Sex', 'Age', 'SibSp',
       'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked'],
      dtype='object')

1.4.4任务四:查看"cabin"这列的所有项 [有多种方法]

df['Cabin'].head(3)
0    NaN
1    C85
2    NaN
Name: Cabin, dtype: object
df.Cabin.head(3)
0    NaN
1    C85
2    NaN
Name: Cabin, dtype: object

1.4.5 任务五:加载文件"test_1.csv",然后对比"train.csv",看看有哪些多出的列,然后将多出的列删除

经过我们的观察发现一个测试集test_1.csv有一列是多余的,我们需要将这个多余的列删去

test_1 = pd.read_csv('test_1.csv')
test_1.head(3)
Unnamed: 0 PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked a
0 0 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S 100
1 1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 0 PC 17599 71.2833 C85 C 100
2 2 3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S 100
# 删除多余的列
del test_1["a"]
test_1.head(3)
Unnamed: 0 PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
0 0 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S
1 1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 0 PC 17599 71.2833 C85 C
2 2 3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S

1.4.6 任务六: 将[‘PassengerId’,‘Name’,‘Age’,‘Ticket’]这几个列元素隐藏,只观察其他几个列元素

df.drop(['PassengerId','Name','Age','Ticket'],axis=1).head(3)
Survived Pclass Sex SibSp Parch Fare Cabin Embarked
0 0 3 male 1 0 7.2500 NaN S
1 1 1 female 1 0 71.2833 C85 C
2 1 3 female 0 0 7.9250 NaN S

如果想要完全的删除你的数据结构,使用inplace=True,因为使用inplace就将原数据覆盖了,所以这里没有用

# 思考回答
df.head(3) 
PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
0 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 0 PC 17599 71.2833 C85 C
2 3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S

1.5 筛选的逻辑

表格数据中,最重要的一个功能就是要具有可筛选的能力,选出我所需要的信息,丢弃无用的信息。

下面我们还是用实战来学习pandas这个功能。

1.5.1 任务一: 我们以"Age"为筛选条件,显示年龄在10岁以下的乘客信息。

df[df["Age"]<10].head(3)
PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
7 8 0 3 Palsson, Master. Gosta Leonard male 2.0 3 1 349909 21.075 NaN S
10 11 1 3 Sandstrom, Miss. Marguerite Rut female 4.0 1 1 PP 9549 16.700 G6 S
16 17 0 3 Rice, Master. Eugene male 2.0 4 1 382652 29.125 NaN Q

1.5.2 任务二: 以"Age"为条件,将年龄在10岁以上和50岁以下的乘客信息显示出来,并将这个数据命名为midage

midage = df[(df["Age"]>10)& (df["Age"]<50)]
midage.head(3)
PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
0 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 0 PC 17599 71.2833 C85 C
2 3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S

【提示】了解pandas的条件筛选方式以及如何使用交集和并集操作

1.5.3 任务三:将midage的数据中第100行的"Pclass"和"Sex"的数据显示出来

midage = midage.reset_index(drop=True)
midage.head(3)
PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
0 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 0 PC 17599 71.2833 C85 C
2 3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S

【思考】这个reset_index()函数的作用是什么?如果不用这个函数,下面的任务会出现什么情况?

midage.loc[[100],['Pclass','Sex']]
Pclass Sex
100 2 male

1.5.4 任务四:使用loc方法将midage的数据中第100,105,108行的"Pclass","Name"和"Sex"的数据显示出来

midage.loc[[100,105,108],['Pclass','Name','Sex']] #因为你主动的延长了行的距离,所以会产生表格形式
Pclass Name Sex
100 2 Byles, Rev. Thomas Roussel Davids male
105 3 Cribb, Mr. John Hatfield male
108 3 Calic, Mr. Jovo male

1.5.5 任务五:使用iloc方法将midage的数据中第100,105,108行的"Pclass","Name"和"Sex"的数据显示出来

midage.iloc[[100,105,108],[2,3,4]]
Pclass Name Sex
100 2 Byles, Rev. Thomas Roussel Davids male
105 3 Cribb, Mr. John Hatfield male
108 3 Calic, Mr. Jovo male

3 第一章:探索性数据分析

开始之前,导入numpy、pandas包和数据

#加载所需的库
import numpy as np
import pandas as pd
#载入之前保存的train_chinese.csv数据,关于泰坦尼克号的任务,我们就使用这个数据
text = pd.read_csv('train_chinese.csv')
text.head()
乘客ID 是否幸存 仓位等级 姓名 性别 年龄 兄弟姐妹个数 父母子女个数 船票信息 票价 客舱 登船港口
0 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 0 PC 17599 71.2833 C85 C
2 3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S
3 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 0 113803 53.1000 C123 S
4 5 0 3 Allen, Mr. William Henry male 35.0 0 0 373450 8.0500 NaN S

1.6 了解你的数据吗?

教材《Python for Data Analysis》第五章

1.6.1 任务一:利用Pandas对示例数据进行排序,要求升序

# 具体请看《利用Python进行数据分析》第五章 排序和排名 部分

#自己构建一个都为数字的DataFrame数据
frame = pd.DataFrame(np.arange(8).reshape((2, 4)), 
                     index=['2', '1'], 
                     columns=['d', 'a', 'b', 'c'])
frame

d a b c
2 0 1 2 3
1 4 5 6 7

【代码解析】

pd.DataFrame() :创建一个DataFrame对象

np.arange(8).reshape((2, 4)) : 生成一个二维数组(2*4),第一列:0,1,2,3 第二列:4,5,6,7

index=['2, 1] :DataFrame 对象的索引列

columns=[‘d’, ‘a’, ‘b’, ‘c’] :DataFrame 对象的索引行

# 大多数时候我们都是想根据列的值来排序,所以,将你构建的DataFrame中的数据根据某一列,升序排列
frame.sort_values(by='c', ascending=False)
d a b c
1 4 5 6 7
2 0 1 2 3

可以看到sort_values这个函数中by参数指向要排列的列,ascending参数指向排序的方式(升序还是降序)

【总结】下面将不同的排序方式做一个小总结

# 让行索引升序排序
frame.sort_index()
d a b c
1 4 5 6 7
2 0 1 2 3
# 让列索引升序排序
frame.sort_index(axis=1)
a b c d
2 1 2 3 0
1 5 6 7 4
# 让列索引降序排序
frame.sort_index(axis=1, ascending=False)
d c b a
2 0 3 2 1
1 4 7 6 5
# 让任选两列数据同时降序排序
frame.sort_values(by=['a', 'c'])
d a b c
2 0 1 2 3
1 4 5 6 7

1.6.2 任务二:对泰坦尼克号数据(trian.csv)按票价和年龄两列进行综合排序(降序排列),从数据中你能发现什么

'''
在开始我们已经导入了train_chinese.csv数据,而且前面我们也学习了导入数据过程,根据上面学习,我们直接对目标列进行排序即可
head(20) : 读取前20条数据
'''

text.sort_values(by=['票价', '年龄'], ascending=False).head(3)
乘客ID 是否幸存 仓位等级 姓名 性别 年龄 兄弟姐妹个数 父母子女个数 船票信息 票价 客舱 登船港口
679 680 1 1 Cardeza, Mr. Thomas Drake Martinez male 36.0 0 1 PC 17755 512.3292 B51 B53 B55 C
258 259 1 1 Ward, Miss. Anna female 35.0 0 0 PC 17755 512.3292 NaN C
737 738 1 1 Lesurer, Mr. Gustave J male 35.0 0 0 PC 17755 512.3292 B101 C

【思考】排序后,如果我们仅仅关注年龄和票价两列。根据常识我知道发现票价越高的应该客舱越好,所以我们会明显看出,票价前20的乘客中存活的有14人,这是相当高的一个比例,那么我们后面是不是可以进一步分析一下票价和存活之间的关系,年龄和存活之间的关系呢?当你开始发现数据之间的关系了,数据分析就开始了。

1.6.3 任务三:利用Pandas进行算术计算,计算两个DataFrame数据相加结果

# 具体请看《利用Python进行数据分析》第五章 算术运算与数据对齐 部分

#建立一个例子
frame1_a = pd.DataFrame(np.arange(9.).reshape(3, 3),
                     columns=['a', 'b', 'c'],
                     index=['one', 'two', 'three'])
frame1_b = pd.DataFrame(np.arange(12.).reshape(4, 3),
                     columns=['a', 'e', 'c'],
                     index=['first', 'one', 'two', 'second'])
frame1_a
a b c
one 0.0 1.0 2.0
two 3.0 4.0 5.0
three 6.0 7.0 8.0
frame1_b
a e c
first 0.0 1.0 2.0
one 3.0 4.0 5.0
two 6.0 7.0 8.0
second 9.0 10.0 11.0
#将frame_a和frame_b进行相加
frame1_a + frame1_b
a b c e
first NaN NaN NaN NaN
one 3.0 NaN 7.0 NaN
second NaN NaN NaN NaN
three NaN NaN NaN NaN
two 9.0 NaN 13.0 NaN

1.6.4 任务四:通过泰坦尼克号数据如何计算出在船上最大的家族有多少人?

'''
还是用之前导入的chinese_train.csv如果我们想看看在船上,最大的家族有多少人(‘兄弟姐妹个数’+‘父母子女个数’),我们该怎么做呢?
'''
max(text['兄弟姐妹个数'] + text['父母子女个数'])
10

1.6.5 任务五:学会使用Pandas describe()函数查看数据基本统计信息

#(1) 关键知识点示例做一遍(简单数据)
# 具体请看《利用Python进行数据分析》第五章 汇总和计算描述统计 部分

#建立一个例子
frame2 = pd.DataFrame([[1.4, np.nan], 
                       [7.1, -4.5],
                       [np.nan, np.nan], 
                       [0.75, -1.3]
                      ], index=['a', 'b', 'c', 'd'], columns=['one', 'two'])
frame2
one two
a 1.40 NaN
b 7.10 -4.5
c NaN NaN
d 0.75 -1.3
# 调用 describe 函数,观察frame2的数据基本信息

frame2.describe()

'''
count : 样本数据大小
mean : 样本数据的平均值
std : 样本数据的标准差
min : 样本数据的最小值
25% : 样本数据25%的时候的值
50% : 样本数据50%的时候的值
75% : 样本数据75%的时候的值
max : 样本数据的最大值
'''
'\ncount : 样本数据大小\nmean : 样本数据的平均值\nstd : 样本数据的标准差\nmin : 样本数据的最小值\n25% : 样本数据25%的时候的值\n50% : 样本数据50%的时候的值\n75% : 样本数据75%的时候的值\nmax : 样本数据的最大值\n'

1.6.6 任务六:分别看看泰坦尼克号数据集中 票价、父母子女 这列数据的基本统计数据,你能发现什么?

'''
看看泰坦尼克号数据集中 票价 这列数据的基本统计数据
'''
text['票价'].describe()
count    891.000000
mean      32.204208
std       49.693429
min        0.000000
25%        7.910400
50%       14.454200
75%       31.000000
max      512.329200
Name: 票价, dtype: float64

【思考】从上面数据我们可以看出,
一共有891个票价数据,
平均值约为:32.20,
标准差约为49.69,说明票价波动特别大,
25%的人的票价是低于7.91的,50%的人的票价低于14.45,75%的人的票价低于31.00,
票价最大值约为512.33,最小值为0。

当然,这只是我的想法,你还可以有更多想法,欢迎写在你的学习笔记中。

'''
通过上面的例子,我们再看看泰坦尼克号数据集中 父母子女个数 这列数据的基本统计数据,然后可以说出你的想法
'''
text['父母子女个数'].describe()
count    891.000000
mean       0.381594
std        0.806057
min        0.000000
25%        0.000000
50%        0.000000
75%        0.000000
max        6.000000
Name: 父母子女个数, dtype: float64

你可能感兴趣的:(数据分析,数据分析,python)