机器学习算法Task4条件随机场

CRF

原理推荐看知乎:
https://www.zhihu.com/question/35866596/answer/236886066

import numpy as np
 
class CRF(object):
    '''实现条件随机场预测问题的维特比算法
    '''
    def __init__(self, V, VW, E, EW):
        '''
        :param V:是定义在节点上的特征函数,称为状态特征
        :param VW:是V对应的权值
        :param E:是定义在边上的特征函数,称为转移特征
        :param EW:是E对应的权值
        '''
        self.V  = V  #点分布表
        self.VW = VW #点权值表
        self.E  = E  #边分布表
        self.EW = EW #边权值表
        self.D  = [] #Delta表,最大非规范化概率的局部状态路径概率
        self.P  = [] #Psi表,当前状态和最优前导状态的索引表s
        self.BP = [] #BestPath,最优路径
        return 
        
    def Viterbi(self):
        '''
        条件随机场预测问题的维特比算法,此算法一定要结合CRF参数化形式对应的状态路径图来理解,更容易理解.
        '''
        self.D = np.full(shape=(np.shape(self.V)), fill_value=.0)
        self.P = np.full(shape=(np.shape(self.V)), fill_value=.0)
        for i in range(np.shape(self.V)[0]):
            #初始化
            if 0 == i:
                self.D[i] = np.multiply(self.V[i], self.VW[i])
                self.P[i] = np.array([0, 0])
                print('self.V[%d]='%i, self.V[i], 'self.VW[%d]='%i, self.VW[i], 'self.D[%d]='%i, self.D[i])
                print('self.P:', self.P)
                pass
            #递推求解布局最优状态路径
            else:
                for y in range(np.shape(self.V)[1]): #delta[i][y=1,2...]
                    for l in range(np.shape(self.V)[1]): #V[i-1][l=1,2...]
                        delta = 0.0
                        delta += self.D[i-1, l]                      #前导状态的最优状态路径的概率
                        delta += self.E[i-1][l,y]*self.EW[i-1][l,y]  #前导状态到当前状体的转移概率
                        delta += self.V[i,y]*self.VW[i,y]            #当前状态的概率
                        print('(x%d,y=%d)-->(x%d,y=%d):%.2f + %.2f + %.2f='%(i-1, l, i, y, \
                              self.D[i-1, l], \
                              self.E[i-1][l,y]*self.EW[i-1][l,y], \
                              self.V[i,y]*self.VW[i,y]), delta)
                        if 0 == l or delta > self.D[i, y]:
                            self.D[i, y] = delta
                            self.P[i, y] = l
                    print('self.D[x%d,y=%d]=%.2f\n'%(i, y, self.D[i,y]))
        print('self.Delta:\n', self.D)
        print('self.Psi:\n', self.P)
        
        #返回,得到所有的最优前导状态
        N = np.shape(self.V)[0]
        self.BP = np.full(shape=(N,), fill_value=0.0)
        t_range = -1 * np.array(sorted(-1*np.arange(N)))
        for t in t_range:
            if N-1 == t:#得到最优状态
                self.BP[t] = np.argmax(self.D[-1])
            else: #得到最优前导状态
                self.BP[t] = self.P[t+1, int(self.BP[t+1])]
        
        #最优状态路径表现在存储的是状态的下标,我们执行存储值+1转换成示例中的状态值
        #也可以不用转换,只要你能理解,self.BP中存储的0是状态1就可以~~~~
        self.BP += 1
        
        print('最优状态路径为:', self.BP)
        return self.BP
        
def CRF_manual():   
    S = np.array([[1,1],   #X1:S(Y1=1), S(Y1=2)
                  [1,1],   #X2:S(Y2=1), S(Y2=2)
                  [1,1]])  #X3:S(Y3=1), S(Y3=1)
    SW = np.array([[1.0, 0.5], #X1:SW(Y1=1), SW(Y1=2)
                   [0.8, 0.5], #X2:SW(Y2=1), SW(Y2=2)
                   [0.8, 0.5]])#X3:SW(Y3=1), SW(Y3=1)
    E = np.array([[[1, 1],  #Edge:Y1=1--->(Y2=1, Y2=2)
                   [1, 0]], #Edge:Y1=2--->(Y2=1, Y2=2)
                  [[0, 1],  #Edge:Y2=1--->(Y3=1, Y3=2) 
                   [1, 1]]])#Edge:Y2=2--->(Y3=1, Y3=2)
    EW= np.array([[[0.6, 1],  #EdgeW:Y1=1--->(Y2=1, Y2=2)
                   [1, 0.0]], #EdgeW:Y1=2--->(Y2=1, Y2=2)
                  [[0.0, 1],  #EdgeW:Y2=1--->(Y3=1, Y3=2)
                   [1, 0.2]]])#EdgeW:Y2=2--->(Y3=1, Y3=2)
    
    crf = CRF(S, SW, E, EW)
    ret = crf.Viterbi()
    print('最优状态路径为:', ret)
    return
    
if __name__=='__main__':
    CRF_manual()

参考

https://www.zhihu.com/question/35866596/answer/236886066

你可能感兴趣的:(机器学习)