基于随机梯度下降的矩阵分解算法

import pandas as pd
import numpy as np
import os
 
def difference(left,right,on): #求两个dataframe的差集
    df = pd.merge(left,right,how='left',on=on) #参数on指的是用于连接的列索引名称
    left_columns = left.columns
    col_y = df.columns[-1] # 得到最后一列
    df = df[df[col_y].isnull()]#得到boolean的list
    df = df.iloc[:,0:left_columns.size]#得到的数据里面还有其他同列名的column
    df.columns = left_columns # 重新定义columns
    return df
    
def readfile(filepath): #读取文件,同时得到训练集和测试集
    
    pwd = os.getcwd()#返回当前工程的工作目录
    os.chdir(os.path.dirname(filepath))
    #os.path.dirname()获得filepath文件的目录;chdir()切换到filepath目录下
    initialData =  pd.read_csv(os.path.basename(filepath))
    #basename()获取指定目录的相对路径
    os.chdir(pwd)#回到先前工作目录下
    predData = initialData.iloc[:,0:3] #将最后一列数据去掉
    newIndexData = predData.drop_duplicates()
    trainData = newIndexData.sample(axis=0,frac = 0.1) #90%的数据作为训练集
    testData = difference(newIndexData,trainData,['userId','movieId']).sample(axis=0,frac=0.1)
    return trainData,testData
 
def getmodel(train):
    slowRate = 0.99
    preRmse = 10000000.0
    max_iter = 100
    features = 3
    lamda = 0.2
    gama = 0.01 #随机梯度下降中加入,防止更新过度
    user = pd.DataFrame(train.userId.drop_duplicates(),columns=['userId']).reset_index(drop=True) #把在原来dataFrame中的索引重新设置,drop=True并抛弃
 
    movie = pd.DataFrame(train.movieId.drop_duplicates(),columns=['movieId']).reset_index(drop=True)
    userNum = user.count().loc['userId'] #671
    movieNum = movie.count().loc['movieId'] 
    userFeatures = np.random.rand(userNum,features) #构造user和movie的特征向量集合
    movieFeatures = np.random.rand(movieNum,features)
    #假设每个user和每个movie有3个feature
    userFeaturesFrame =user.join(pd.DataFrame(userFeatures,columns = ['f1','f2','f3']))
    movieFeaturesFrame =movie.join(pd.DataFrame(movieFeatures,columns= ['f1','f2','f3']))
    userFeaturesFrame = userFeaturesFrame.set_index('userId')
    movieFeaturesFrame = movieFeaturesFrame.set_index('movieId') #重新设置index
  
    for i in range(max_iter): 
        rmse = 0
        n = 0
        for index,row in user.iterrows():
            uId = row.userId
            userFeature = userFeaturesFrame.loc[uId] #得到userFeatureFrame中对应uId的feature
 
            u_m = train[train['userId'] == uId] #找到在train中userId点评过的movieId的data
            for index,row in u_m.iterrows(): 
                u_mId = int(row.movieId)
                #realRating = row.sort_values(by=u'rating',ascending = False)
                realRating = row.userId

                movieFeature = movieFeaturesFrame.loc[u_mId] 
 
                eui = realRating-np.dot(userFeature,movieFeature)
                rmse += pow(eui,2)
                n += 1
                userFeaturesFrame.loc[uId] += gama * (eui*movieFeature-lamda*userFeature) 
                movieFeaturesFrame.loc[u_mId] += gama*(eui*userFeature-lamda*movieFeature)
        nowRmse = np.sqrt(rmse*1.0/n)
        print('step:%f,rmse:%f'%((i+1),nowRmse))
        if nowRmse

测试数据表
基于随机梯度下降的矩阵分解算法_第1张图片

运行结果
基于随机梯度下降的矩阵分解算法_第2张图片

你可能感兴趣的:(python)