RoIAlign源码解析

RoIAlign源码及示意图

/*
* 参数解释
* bottom_data 需要做RoIAlign的feature map
* spatial_scale feature map放缩的尺寸 vgg是1/16
* channels height width feature map的通道高和宽不用多说
* pooled_height pooled_width RoIAlign后的feature大小
* sampling_ratio RoIAlign时,每个bin内高和宽方向的采样率,论文中默认是2,即每个bin采样2*2=4个点
* bottom_rois rpn生成的物体坐标,以原图为参照的,所以用在feature上时需要spatial_scale这个参数
*/
template <typename T>
__global__ void RoIAlignForward(
    const int nthreads,
    const T* bottom_data,
    const T spatial_scale,
    const int channels,
    const int height,
    const int width,
    const int pooled_height,
    const int pooled_width,
    const int sampling_ratio,
    const T* bottom_rois,
    T* top_data) {
  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    // (n, c, ph, pw) is an element in the pooled output
    int pw = index % pooled_width;
    int ph = (index / pooled_width) % pooled_height;
    int c = (index / pooled_width / pooled_height) % channels;
    int n = index / pooled_width / pooled_height / channels;

    const T* offset_bottom_rois = bottom_rois + n * 5;
    int roi_batch_ind = offset_bottom_rois[0];

    // Do not using rounding; this implementation detail is critical
    T roi_start_w = offset_bottom_rois[1] * spatial_scale;
    T roi_start_h = offset_bottom_rois[2] * spatial_scale;
    T roi_end_w = offset_bottom_rois[3] * spatial_scale;
    T roi_end_h = offset_bottom_rois[4] * spatial_scale;
    // T roi_start_w = round(offset_bottom_rois[1] * spatial_scale);
    // T roi_start_h = round(offset_bottom_rois[2] * spatial_scale);
    // T roi_end_w = round(offset_bottom_rois[3] * spatial_scale);
    // T roi_end_h = round(offset_bottom_rois[4] * spatial_scale);

    // Force malformed ROIs to be 1x1
    T roi_width = max(roi_end_w - roi_start_w, (T)1.);
    T roi_height = max(roi_end_h - roi_start_h, (T)1.);
    T bin_size_h = static_cast(roi_height) / static_cast(pooled_height);
    T bin_size_w = static_cast(roi_width) / static_cast(pooled_width);

    const T* offset_bottom_data =
        bottom_data + (roi_batch_ind * channels + c) * height * width;

    // We use roi_bin_grid to sample the grid and mimic integral
    // 采样率,论文中默认是2,如果没有设置则等于ceil(roi_height / pooled_height),大概约等于每个bin里有几个格子就采样几个点
    int roi_bin_grid_h = (sampling_ratio > 0)
        ? sampling_ratio
        : ceil(roi_height / pooled_height); // e.g., = 2
    int roi_bin_grid_w =
        (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);

    // We do average (integral) pooling inside a bin
    const T count = roi_bin_grid_h * roi_bin_grid_w; // e.g. = 4

    T output_val = 0.;
    for (int iy = 0; iy < roi_bin_grid_h; iy++) // e.g., iy = 0, 1
    {
      // 在height方向采样
      const T y = roi_start_h + ph * bin_size_h +
          static_cast(iy + .5f) * bin_size_h /
              static_cast(roi_bin_grid_h); // e.g., 0.5, 1.5
      // 在width方向采样
      for (int ix = 0; ix < roi_bin_grid_w; ix++) {
        const T x = roi_start_w + pw * bin_size_w +
            static_cast(ix + .5f) * bin_size_w /
                static_cast(roi_bin_grid_w);
       // 被采样到的点由于坐标是浮点数,其对应位置的值需要双线性插值获取(最近的4个点得到)
        T val = bilinear_interpolate(
            offset_bottom_data, height, width, y, x, index);
        output_val += val;
      }
    }
    output_val /= count;

    top_data[index] = output_val;
  }
}

} // namespace

RoIAlign

双线性插值代码及示意图、公式

template <typename T>
__device__ T bilinear_interpolate(
    const T* bottom_data,
    const int height,
    const int width,
    T y,
    T x,
    const int index /* index for debug only*/) {
  // deal with cases that inverse elements are out of feature map boundary
  if (y < -1.0 || y > height || x < -1.0 || x > width) {
    // empty
    return 0;
  }

  if (y <= 0) {
    y = 0;
  }
  if (x <= 0) {
    x = 0;
  }

  int y_low = (int)y;
  int x_low = (int)x;
  int y_high;
  int x_high;

  if (y_low >= height - 1) {
    y_high = y_low = height - 1;
    y = (T)y_low;
  } else {
    y_high = y_low + 1;
  }

  if (x_low >= width - 1) {
    x_high = x_low = width - 1;
    x = (T)x_low;
  } else {
    x_high = x_low + 1;
  }

  T ly = y - y_low;
  T lx = x - x_low;
  T hy = 1. - ly, hx = 1. - lx;
  // do bilinear interpolation
  // 由最近的4个点插值得到,示意图更清楚
  T v1 = bottom_data[y_low * width + x_low];
  T v2 = bottom_data[y_low * width + x_high];
  T v3 = bottom_data[y_high * width + x_low];
  T v4 = bottom_data[y_high * width + x_high];
  // 对应下面公式hx:1-u hy:1-v lx:u ly:v
  T w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;

  T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);

  return val;
}

f(i+u,j+v) = (1-u)(1-v)f(i,j)+ u(1-v)f(i+1,j) + (1-u)vf(i,j+1) + uvf(i+1,j+1)

这里写图片描述


引用:
caffe2/operators/roi_align_op.cu
mask rcnn解读
Deformable Convolutional Networks解读

你可能感兴趣的:(深度学习,detection)