Matlab判断正态分布性检验

进行参数估计和假设检验时,通常总是假定总体服从正态分布,虽然在许多情况下这个假定是合理的,但是当要以此为前提进行重要的参数估计或假设检验,或者人们对它有较大怀疑的时候,就确有必要对这个假设进行检验,
进行总体正态性检验的方法有很多种,以下针对MATLAB统计工具箱中提供的程序,简单介绍几种方法。
1)Jarque-Bera检验
利用正态分布的偏度g1和峰度g2,构造一个包含g1,g2的分布统计量(自由度n=2),对于显著性水平,当分布统计量小于分布的分位数时,接受H0:总体服从正态分布;否则拒绝H0,即总体不服从正态分布。这个检验适用于大样本,当样本容量n较小时需慎用。Matlab命令:h =jbtest(x),[h,p,jbstat,cv] =jbtest(x,alpha)。
2)Kolmogorov-Smirnov检验
通过样本的经验分布函数与给定分布函数的比较,推断该样本是否来自给定分布函数的总体。容量n的样本的经验分布函数记为Fn(x),可由样本中小于x的数据所占的比例得到,给定分布函数记为G(x),构造的统计量为,即两个分布函数之差的最大值,对于假设H0:总体服从给定的分布G(x),及给定的,根据Dn的极限分布(n?¥时的分布)确定统计量关于是否接受H0的数量界限。
因为这个检验需要给定G(x),所以当用于正态性检验时只能做标准正态检验,即H0:总体服从标准正态分布。Matlab命令:h =kstest(x)。
3)Lilliefors检验
它将Kolmogorov-Smirnov检验改进用于一般的正态性检验,即H0:总体服从正态分布,其中由样本均值和方差估计。Matlab命令:
h =lillietest(x),[h,p,lstat,cv]=lillietest(x,alpha)。
4)另外还有一种方法:首先对于数据进行标准化:Z = ZSCORE(X),然后在进行2)的Kolmogorov-Smirnov检验,检验是否为标准正态分布,类似于对于方法2)的改进。

你可能感兴趣的:(MATLAB)