hdu 5534 Partial Tree(完全背包)

 

Problem Description
In mathematics, and more specifically in graph theory, a tree is an undirected graph in which any two nodes are connected by exactly one path. In other words, any connected graph without simple cycles is a tree.

You find a partial tree on the way home. This tree has n nodes but lacks of n−1 edges. You want to complete this tree by adding n−1 edges. There must be exactly one path between any two nodes after adding. As you know, there are nn−2 ways to complete this tree, and you want to make the completed tree as cool as possible. The coolness of a tree is the sum of coolness of its nodes. The coolness of a node is f(d), where f is a predefined function and d is the degree of this node. What's the maximum coolness of the completed tree?

 

 

 

Input
The first line contains an integer T indicating the total number of test cases.
Each test case starts with an integer n in one line,
then one line with n−1 integers f(1),f(2),…,f(n−1).

1≤T≤2015
2≤n≤2015
0≤f(i)≤10000
There are at most 10 test cases with n>100.

 

 

 

Output
For each test case, please output the maximum coolness of the completed tree in one line.

 

 

 

Sample Input
2
3
2 1
4
5 1 4

 

 
Sample Output
5 
19

 

 

 

Source
2015ACM/ICPC亚洲区长春站-重现赛(感谢东北师大)
 
注意到一个节点数为n的树的度数和为2*n-2,所以问题就转换为了把2*n-2个度分配给n个节点所能获得的最大价值,而且每一个节点至少分到1个度。我们可以先每一个分一个度,然后把n-2个节点任意分配完。分配的时候因为已经分了1个度了,所以要把2~n-1的度看为1~n-1,然后做个完全背包就行了。
 1 #pragma comment(linker, "/STACK:1024000000,1024000000")
 2 #include
 3 #include
 4 #include
 5 #include
 6 #include
 7 #include
 8 #include
 9 #include<set>
10 #include
11 #include
12 #include
13 #include
14 #include 
15 using namespace std;
16 #define PI acos(-1.0)
17 #define max(a,b) (a) > (b) ? (a) : (b)
18 #define min(a,b) (a) < (b) ? (a) : (b)
19 #define ll long long
20 #define eps 1e-10
21 #define MOD 1000000007
22 #define N 2116
23 #define inf 1e12
24 int n;
25 int f[N],dp[N];
26 int main()
27 {
28    int t;
29    scanf("%d",&t);
30    while(t--){
31       scanf("%d",&n);
32       for(int i=1;i<=n-1;i++){
33          scanf("%d",&f[i]);
34       }
35       int ans=0;
36       ans+=f[1]*n;
37       for(int i=2;i<=n-1;i++){
38          f[i]-=f[1];
39       }
40       for(int i=1;i<=n-2;i++){
41          f[i]=f[i+1];
42       }
43       //memset(dp,0,sizeof(dp));
44       for(int i=0;i){
45          dp[i]=-inf;
46       }
47       dp[0]=0;
48       for(int i=1;i<=n-2;i++){
49          for(int j=i;j<=n-2;j++){
50             dp[j]=max(dp[j],dp[j-i]+f[i]);
51          }
52       }
53       ans+=dp[n-2];
54       printf("%d\n",ans);
55    }
56    return 0;
57 }
View Code

 

转载于:https://www.cnblogs.com/UniqueColor/p/5001692.html

你可能感兴趣的:(hdu 5534 Partial Tree(完全背包))