计算机网络相关(体系结构&TCP运输连接管理)

1. 计算机网络体系结构

具有五层协议的体系结构
OSI的七层协议体系结构(图1-16(a)的概念清楚,理论也较完整,但它既复杂又不实用。TCP/IP 体系结构则不同,但它现在却得到了非常广泛的应用。TCP/IP 是一个四层的体系结构(图1-16(b),它包含应用层、运输层、网际层和网络接口层(用网际层这个名字是强调这一层是为了解决不同网络的互连问题)。不过从实质上讲,TCP/IP只有最上面的三层,因为最下面的网络接口层并没有什么具体内容。因此在学习计算机网络的原理时往往采取折中的办法,即综合OSI和TCP/IP的优点,采用一种只有五层协议的体系结构(图1-16(c)),这样既简洁又能将概念阐述清楚。

计算机网络相关(体系结构&TCP运输连接管理)_第1张图片

(1)应用层(application layer)
应用层是体系结构中的最高层。应用层直接为用户的应用进程提供服务。这里的进程就是指正在运行的程序。在因特网中的应用层协议很多,如支持万维网应用的HTTP协议,支持电子邮件的SMTP协议,支持文件传送的FTP协议等等。
(2)运输层(ransport layer)
运输层的任务就是负责向两个主机中进程之间的通信提供服务。由于一个主机可同时运行多个进程,因此运输层有复用和分用的功能。复用就是多个应用层进程可同时使用下面运输层的服务,分用则是运输层把收到的信息分别交付给上面应用层中的相应的进程。
运输层主要使用以下两种协议:
传输控制协议TCP(ransnission Control Protocol)一 面向连接的,数据传输的单位是报文段(segment),能够提供可靠的交付。
用户数据报协议UDP(User Datagram Protoco)--无连 接的,数据传输的单位是用户数据报,不保证提供可靠的交付,只能提供“尽最大努力交付(best.efort delivery)"。
(3)网络层(network layer)
网络层负责为分组交换网上的不同主机提供通信服务。在发送数据时,网络层把运输层产生的报文段或用户数据报封装成分组或包进行传送。在TCP/IP体系中,由于网络层使用IP协议,因此分组也叫作IP数据报,或简称为数据报。
本书把“分组”和“数据报”作为同义词使用。
请注意:不要将运输层的“用户数据报UDP"和网络层的“IP数据报”弄混。还有一点也请注意:无论在哪一层传送的数据单元,习惯上都可笼统地用“分组"来表示。在阅读国外文献时,特别要注意packet(分组或包)往往是作为任何一层传送的数据单元的同义词。
网络层的另一个任务就是要选择合适的路由,使源主机运输层所传下来的分组,能够通过网络中的路由器找到目的主机。
这里要强调指出,网络层中的“网络”二字,已不是我们通常谈到的具体的网络,而是在计算机网络体系结构模型中的专用名词。
对于由广播信道构成的分组交换网,路由选择的问题很简单,因此这种网络的网络层非常简单,甚至可以没有。

因特网是一个很大的互联网,它由大量的异构(heterogeneous)网络通过路由器(router)相互连接起来。因特网主要的网络层协议是无连接的网际协议IP(Internet Protocol)和许多种路由选择协议,因此因特网的网络层也叫做网际层或IP层。在本书中,网络层、网际层和IP层都是同义语。
(4)数据链路层(data link layer)

常简称为链路层。我们知道,两个主机之间的数据传输,总是在一段一段的链路上传送的,也就是说,在两个相邻结点之间(主机和路由器之间或两个路由器之间)传送数据是直接传送的(点对点)。这时就需要使用专门的链路层的协议。在两个相邻结点之间传送数据时,数据链路层将网络层交下来的IP 数据报组装成帧(framing),在两个相邻结点间的链路上“透明”地传送帧(frame)中的数据。每一帧包括数据和必要的控制信息(如同步信息、地址信息、差错控制等)。典型的帧长是几百字节到一干多字节。

“透明”是一个很重要的术语。它表示:某一个实际存在的事物看起来却好像不存在一样(例如,你看不见在你前面有100%透明的玻璃的存在)。“在数据链路层透明传送数据"表示无论什么样的比特组合的数据都能够通过这个数据链路层。因此,对所传送的数据来说,这些数据就“看不见”数据链路层。或者说,数据链路层对这些数据来说是透明的。
在接收数据时,控制信息使接收端能够知道一个帧从哪个比特开始和到哪个比特结束。这样,数据链路层在收到一个帧后,就可从中提取出数据部分,上交给网络层。控制信息还使接收端能够检测到所收到的帧中有无差错。如发现有差错,数据链路层就简单地丢弃这个出了差错的帧,以免继续传送下去白白浪费网络资源。如果需要改正错误,就由运输层的TCP协议来完成。
(5)物理层(physical layer)
在物理层上所传数据的单位是比特。物理层的任务就是透明地传送比特流。也就是说,发送方发送1(或0)时,接收方应当收到1(或0)而不是0(或1)。因此物理层要考虑用多大的电压代表“I"或“0",以及接收方如何识别出发送方所发送的比特。物理层还要确定连接电缆的插头应当有多少根引脚以及各条引脚应如何连接。当然,哪几个比特代表什么意思,则不是物理层所要管的。请注意,传递信息所利用的一些物理媒体,如双绞线、同轴电缆、光缆、无线信道等,并不在物理层协议之内而是在物理层协议的下面。因此也有人把物理媒体当做第0层。
在因特网所使用的各种协议中,最重要的和最著名的就是TCP和IP两个协议。现在人们经常提到的TCP/IP并不一-定是单指TCP和IP这两个具体的协议,而往往是表示因特网所使用的整个TCP/IP协议族(protocol suite)。
图1-17说明的是应用进程的数据在各层之间的传递过程中所经历的变化。这里为简单起见,假定两个主机是直接相连的。

计算机网络相关(体系结构&TCP运输连接管理)_第2张图片

假定主机1的应用进程AP向主机2的应用进程AP2传送数据。AP先将其数据交给本主机的第5层(应用层)。第5层加上必要的控制信息H5就变成了下一层的数据单元。第4层(运输层)收到这个数据单元后,加上本层的控制信息H4,再交给第3层(网络层),成为第3层的数据单元。依此类推。不过到了第2层(数据链路层)后,控制信息分成两部分,分别加到本层数据单元的首部(H2)和尾部(T2),而第1层(物理层)由于是比特流的传送,所以不再加上控制信息。请注意,传送比特流时应从首部开始传送。
OSI参考模型把对等层次之间传送的数据单位称为该层的协议数据单元PDU(Protocol Data Unit)。这个名词现已被许多非OSI标准采用。
当这一串的比特流离开主机1经网络的物理媒体传送到目的站主机2时,就从主机2的第1层依次上升到第5层。每一层根据控制信息进行必要的操作,然后将控制信息剥去,将该层剩下的数据单元上交给更高的一层。最后,把应用进程API发送的数据交给目的站的应用进程AP2。
可以用一个简单例子来比喻上述过程。有一封信从最高层向下传。每经过一层就包上一个新的信封,写上必要的地址信息。包有多个信封的信件传送到目的站后,从第1层起,每层拆开一个信封后就把信封中的信交给它的上一层。传到最高层后,取出发信人所发的信交给收信人。
虽然应用进程数据要经过如图1-17 所示的复杂过程才能送到终点的应用进程,但这些复杂过程对用户来说,却都被屏蔽掉了,以致应用进程AP:觉得好像是直接把数据交给了应用进程AP20同理,任何两个同样的层次(例如在两个系统的第4层)之间,也好像如同图1-17中的水平虚线所示的那样,将数据(即数据单元加上控制信息)通过水平處线直接传递给对方。这就是所谓的“对等层”(peer layers)之间的通信。我们以前经常提到的各层协议,实际上就是在各个对等层之间传递数据时的各项规定。
在文献中也还可以见到术语“协议栈”(protocol stack)。这是因为几个层次画在一起很像一个栈(stack)的结构。

2. TCP的运输连接管理

TCP是面向连接的协议。运输连接是用来传送TCP报文的。TCP运输连接的建立和释放是每一次面向连接的通信中必不可少的过程。因此,运输连接就有三个阶段,即:连接建立、数据传送和连接释放。运输连接的管理就是使运输连接的建立和释放都能正常地进行。
在TCP连接建立过程中要解决以下三个问题:
(I)要使每一方能够确知对方的存在。
(2)要允许双方协商一些参数(如最大窗口值、是否使用窗口扩大选项和时间戳选项以及服务质量等)。
(3)能够对运输实体资源(如缓存大小、连接表中的项目等)进行分配。
TCP连接的建立采用客户服务器方式。主动发起连接建立的应用进程叫做客户(client),而被动等待连接建立的应用进程叫做服务器(server)。

TCP 的连接建立
图5-31画出了TCP的建立连接的过程。假定主机A运行的是TCP客户程序,而B运行TCP服务器程序。最初两端的TCP进程都处于CLOSED(关闭)状态。图中在主机下面的方框分别是TCP进程所处的状态。请注意,A主动打开连接,而B被动打开连接。

计算机网络相关(体系结构&TCP运输连接管理)_第3张图片

B的TCP服务器进程先创建传输控制块TCB,准备接受客户进程的连接请求。然后服务器进程就处于LISTEN(收听)状态,等待客户的连接请求。如有,即作出响应。

传输控制块TCB(Tansmission Control Block)存储了每一个连接中的一些重要信息。
如:TCP连接表,到发送和接收媛存的指针,到重传队列的指针,当前的发送和接收序号,等等。

A的TCP客户进程也是首先创建传输控制模块TCB,然后向B发出连接请求报文段,这时首部中的同步位SYN = 1,同时选择一个初始序号seq= x。TCP规定,SYN报文段(即SYN = 1的报文段)不能携带数据,但要消耗掉一个序号。这时,TCP客户进程进入SYN-SENT(同步已发送)状态。
B收到连接请求报文段后,如同意建立连接,则向A发送确认。在确认报文段中应把SYN位和ACK位都置1,确认号是ack=x+ 1,同时也为自己选择一个初始序号seq= y请注意,这个报文段也不能携带数据,但同样要消耗掉一个序号。这时TCP服务器进程进入SYN-RCVD(同步收到)状态。
TCP客户进程收到B的确认后,还要向B给出确认。确认报文段的ACK置1,确认号ack=y+ 1,而自己的序号seq=x+ 1。TCP的标准规定,ACK报文段可以携带数据。但如果不携带数据则不消耗序号,在这种情况下,下一个数据报文段的序号仍是seq=x+1。这时,TCP连接已经建立,A进入ESTABLISHED(已建立连接)状态
当B收到A的确认后,也进入ESTABLISHED状态
上面给出的连接建立过程叫做三次握手(three way handshake),或三次联络。

为什么A还要发送一次确认呢?这主要是为了防止已失效的连接请求报文段突然又传送到了B,因而产生错误。
所谓“已失效的连接请求报文段”是这样产生的。考虑一种正常情况。A发出连接请求,但因连接请求报文丢失而未收到确认。于是A再重传一次连接请求。后来收到了确认,建立了连接。数据传输完毕后,就释放了连接。A共发送了两个连接请求报文段,其中第一个丢失,第二个到达了B。没有“已失效的连接请求报文段”。
现假定出现一种异常情况,即A发出的第一个连接请求报文段并没有丢失,而是在某些网络结点长时间滞留了,以致延误到连接释放以后的某个时间才到达B。本来这是一个早已失效的报文段。但B收到此失效的连接请求报文段后,就误认为是A又发出一次新的连接请求。于是就向A发出确认报文段,同意建立连接。假定不采用三次握手,那么只要B发出确认,新的连接就建立了。
由于现在A并没有发出建立连接的请求,因此不会理睬B的确认,也不会向B发送数据。但B却以为新的运输连接已经建立了,并一直等待A发来数据。B的许多资源就这样白白浪费了。

采用三次握手的办法可以防止上述现象的发生。例如在刚才的情况下,A不会向B的确认发出确认。B由于收不到确认,就知道A并没有要求建立连接。

TCP的连接释放

TCP连接释放过程比较复杂,我们仍结合双方状态的改变来阐明连接释放的过程。
数据传输结束后,通信的双方都可释放连接。现在A和B都处于ESTABLISHED状态(图5-32)。A的应用进程先向其TCP发出连接释放报文段,并停止再发送数据,主动关闭TCP连接。A把连接释放报文段首部的FIN置1,其序号seq=u,它等于前面已传送过的数据的最后一个字节的序号加1。这时A进入FIN-WAIT-1(终止等待1)状态,等待B的确认。请注意,TCP规定,FIN报文段即使不携带数据,它也消耗掉一个序号。

计算机网络相关(体系结构&TCP运输连接管理)_第4张图片

B收到连接释放报文段后即发出确认,确认号是ack=u+ 1,而这个报文段自己的序号是v,等于B前面已传送过的数据的最后一个字节的序号加1。然后B就进入CLOSE-WAIT(关闭等待)状态。TCP服务器进程这时应通知高层应用进程,因而从A到B这个方向的连接就释放了,这时的TCP连接处于半关闭(half-close)状态,即A已经没有数据要发送了,但B若发送数据,A仍要接收。也就是说,从B到A这个方向的连接并未关闭。这个状态可能会持续--些时间。
A收到来自B的确认后,就进入FIN-WAIT-2(终止等待2)状态,等待B发出的连接释放报文段。
若B已经没有要向A发送的数据,其应用进程就通知TCP释放连接。这时B发出的连接释放报文段必须使FIN= 1。现假定B的序号为w(在半关闭状态B可能又发送了--些数据)。B还必须重复上次已发送过的确认号ack=u+ 1。这时B就进入LAST-ACK(最后确认)状态,等待A的确认。
A在收到B的连接释放报文段后,必须对此发出确认。在确认报文段中把ACK置1,确认号ack=w+ 1,而自己的序号是seq=u+ 1(根据TCP标准,前面发送过的FIN报文段要消耗一个序号)。然后进入到TIME-WAIT(时间等待)状态。请注意,现在TCP连接还没有释放掉。必须经过时间等待计时器(TIME-WAIT timer)设置的时间2MSL后,A才进入到CLOSED状态。时间MSL叫做最长报文段寿命(Maximum Segment Lifetime),RFC 793建议设为2分钟。但这完全是从工程上来考虑,对于现在的网络,MSL = 2分钟可能太长了一些。因此TCP允许不同的实现可根据具体情况使用更小的MSL值。因此,从A进入到TIME-WAIT状态后,要经过4分钟才能进入到CLOSED状态,才能开始建立下一个新的连接。当A撤销相应的传输控制块TCB后,就结束了这次的TCP连接。

为什么A在TIME-WAIT状态必须等待2MSL的时间呢?这有两个理由。
第一,为了保证A发送的最后一个ACK报文段能够到达B。这个ACK报文段有可能丢失,因而使处在LAST-ACK状态的B收不到对已发送的FIN+ACK报文段的确认。B会超时重传这个FIN+ ACK报文段,而A就能在2MSL时间内收到这个重传的FIN + ACK报文段。接着A重传一次确认,重新启动2MSL计时器。最后,A和B都正常进入到CLOSED状态。如果A在TIME-WAIT状态不等待一段时间,而是在发送完ACK报文段后立即释放连接,那么就无法收到B重传的FIN + ACK报文段,因而也不会再发送一次确认报文段。这样,B就无法按照正常步骤进入CLOSED状态。
第二,防止上一节提到的“已失效的连接请求报文段”出现在本连接中。A在发送完最后一个ACK报文段后,再经过时间2MSL,就可以使本连接持续的时间内所产生的所有报文段都从网络中消失。这样就可以使下一个新的连接中不会出现这种旧的连接请求报文段。
B只要收到了A发出的确认,就进入CLOSED状态。同样,B在撤销相应的传输控制块TCB后,就结束了这次的TCP连接。我们注意到,B结束TCP连接的时间要比A早-些。
上述的TCP连接释放过程是四次握手,但也可以看成是两个二次握手。
除时间等待计时器外,TCP还设有一个保活计时器(keepalive timer)。设想有这样的情况:客户已主动与服务器建立了TCP连接。但后来客户端的主机突然出故障。显然,服务器以后就不能再收到客户发来的数据。因此,应当有措施使服务器不要再白白等待下去。这就是使用保活计时器。服务器每收到一-次客户的数据,就重新设置保活计时器,时间的设置通常是两小时。若两小时没有收到客户的数据,服务器就发送一个探测报文段,以后则每隔75分钟发送一次。若一连发送10个探测报文段后仍无客户的响应,服务器就认为客户端出了故障,接着就关闭这个连接。

 

 

你可能感兴趣的:(计算机网络)