常见的Python可视化库有哪些

语法简洁、功能强大、拥有许多丰富而强大的库是Python广为人知的特性,也是其被昵称为“胶水语言”的关键因素。不过你知道常见的Python可视化库有哪些吗?接下来郑州Python培训小编就给大家介绍一下。

 

常见的Python可视化库有哪些?

Matplotlib

Matplotlib是一个Python 2维绘图库,已经成为Python中公认的数据可视化工具,通过Matplotlib你可以很轻松地画一些或简单或复杂地图形,几行代码即可生成线图、直方图、功率谱、条形图、错误图、散点图等等。

 

 

Seaborn

Seaborn是基于Mtplotlib产生的一个模块,专攻于统计可视化,可以和pandas进行无缝链接,使初学者更容易上手。相对于Matplotlib,Seaborn语法更简洁,两者关系类似于NumPy、和Pandas之间的关系。

 

HoloViews

HoloViews是一个开源的Python库,可以用非常少的代码行中完成数据分析和可视化,除了默认的Matplotlib后端外,还添加了一个Bokeh后端。Bokeh提供了一个强大的平台,通过结合Bokeh提供的交互式小部件,可以使用HTML5 canvas和WebGL快速生成交互性和高维可视化,非常适合于数据的交互式探索。

 

Altair

Altair是Python的一个公认的统计可视化库,它的API简单、友好、一致,并建立在强大的vega-lite(交互式图形语法)之上。Altair API不包含实际的可视化呈现代码,而是按照vega-lite规范发出JSON数据结构。由此产生的数据可以在用户界面中呈现,这种优雅的简单性产生了漂亮且有效的可视化效果,且只需很少的代码。

 

ggplot

ggplot是基于R的ggplot2和图形语法的Python的绘图系统,实现了更少的代码绘制更专业的图形。

它使用一个高级且富有表现力的API来实现线,点等元素的添加,颜色的更改等不同类型的可视化组件的组合或添加,而不需要重复使用相同的代码,然而这对那些试图进行高度定制的的来说,ggplot并不是最好的选择,尽管它也可以制作一些非常复杂、好看的图形。

 

Bokeh

Bokeh是一个Python交互式可视化库,支持现代化Web浏览器展示。它提供风格优雅、简洁的D3.js的图形化样式,并将此功能扩展到高性能交互的数据集,数据流上。使用Bokeh可以快速便捷地创建交互式绘图、仪表板和数据应用程序等。

Bokeh能与NumPy、Pandas,Blaze等大部分数组或表格式的数据结构完美结合。

 

有很多同学想知道参加郑州Python培训班好在哪?从学习效率来看,参加培训班有系统专业的课程、专业的师资老师授课,你无须耗费时间去搜集整理教程资料,更不用担心有问题一时解决不了耗费过多时间;从学习结果来看,参加培训班是对理论知识和实战项目的双重积累学习,期间还有专业的职业规划师跟踪辅导,你可以有目标、有技能的去求职,更具竞争优势。

 

 

你可能感兴趣的:(Python学习教程100天)