- 数据库实验三(SQL 查询语句实践与总结)
从以前
数据库数据库sqloraclemysql
一、实验目的掌握涉及一个以上数据表的查询方法。深入理解多表之间的连接,包括等值连接、自然连接、非等值连接、自身连接、外连接和复合条件连接等多种连接方式。熟练运用嵌套查询,通过多个简单查询构建复杂查询,以此增强SQL的查询能力。二、各类查询SQL语句及分析(一)查询特定班级学生选课情况问题描述:查询20161151班的学生在大学一年级选修的课程情况,查询结果要显示学号(Sno)、姓名(Sname)、
- 解锁辅助驾驶新境界:基于昇腾 AI 异构计算架构 CANN 的应用探秘
倔强的石头_
AIGC人工智能架构
博客主页:倔强的石头的CSDN主页Gitee主页:倔强的石头的gitee主页⏩文章专栏:《AI大模型》期待您的关注目录一、引言二、CANN是什么1.异构计算与人工智能的关系2.CANN的定义和作用3.CANN的技术优势三、基于CANN的辅助驾驶AI应用原理1.目标检测算法2.智能检测流程3.算力平台支持四、基于CANN的辅助驾驶AI优势1.高效训练2.精准检测3.快速编程4.产业应用五、部署实操六
- c语言大一经典题目
知识为甚不进脑
c语言算法开发语言
经典题目一、熟悉编程环境编程题实验01-1:熟悉编程环境,实现基本输出设计在屏幕上输出短句:ProgramminginCisfun!实验01-2:熟悉编程环境,实现基本输出设计在屏幕上输出短句:Whatisacomputer?实验01-3:熟悉编程环境,实现基本输出设计在屏幕上输出一个倒三角形,如下列所示:**********二、格式化输出编程题实验01-4:简单程序设计,格式化输入输出【问题描述
- 比亚迪进军具身智能:未来实验室的战略布局与挑战
前端
比亚迪,这家以新能源汽车闻名全球的企业,正在悄然布局一个全新的领域——具身智能及机器人技术。近日,比亚迪成立未来实验室的消息引发广泛关注,其战略意义和未来发展前景值得我们深入探讨。在人工智能技术飞速发展的今天,选择合适的AI写代码工具对于项目的成功至关重要。比亚迪未来实验室的战略意义:汽车基因与智能融合比亚迪进军机器人领域并非偶然之举。其深厚的汽车制造经验和规模化生产能力,为其在机器人研发方面奠定
- 无线通信起源和发展现状
Zebros
信息与通信射频工程笔记
无线通信的起源和发展现状一、电磁波学说的提出目前我们生活中所用到的无线通信是基于“电磁波”进行传输,所以无线通信的起源就不得不提到“电磁波”,可以说“没有电磁波的发现就不会有现在的无线通信”。1、电磁感应提到“电”和“磁”,我们能轻易想到中学物理课上的“电生磁”、“磁生电”,我们脑海中一定会出现一个人名“法拉第”。在19世纪前,电学和磁学是两个不同的学科,虽然有学者在电或磁的实验中察觉到二者微妙的
- YOLOv10全网最新创新点改进系列:YOLOv10融合SwinTransformer模块,分辨率每层变成一半,而通道数变成两倍,有效提升小目标检测效果!
AI棒棒牛
YOLO目标检测人工智能模型改进yolov10创新sci写作
YOLOv10全网最新创新点改进系列:YOLOv10融合SwinTransformer模块,分辨率每层变成一半,而通道数变成两倍,有效提升小目标检测效果!所有改进代码均经过实验测试跑通!截止发稿时YOLOv10已改进40+!自己排列组合2-4种后,考虑位置不同后可排列组合上千万种!改进不重样!!专注AI学术,关注B站up主:Ai学术叫叫兽er!购买相关资料后畅享一对一答疑!YOLOv10全网最新创
- 中科曙光C/C++研发工程师二面
TrustZone_
ARM/Linux嵌入式面试c语言c++开发语言
自我介绍;针对项目:CNN模型、损失函数、评价指标、改进方向、计算加速;CNN模型CNN,即卷积神经网络,是一种专门用于处理具有类似网格结构数据的深度学习模型。它通过卷积层和池化层提取图像特征,并通过全连接层进行分类或回归预测。CNN在图像识别、目标检测和图像生成等领域取得了巨大成功。具体来说,CNN的模型结构包括输入层、卷积层、激活函数、池化层、全连接层和输出层。输入层接收图像数据,并将其转换为
- 产生式系统实验头歌实验测试不通过解决(人工智能)
兜里没有一毛钱
人工智能pythonnumpy数据分析人工智能机器学习
任务描述本关任务:编写一个使用产生式方法识别动物的系统。编程要求根据提示,在右侧编辑器补充代码,完成产生式系统——动物识别系统的操作,最后达到输入动物特征,输出动物类型的结果。特别说明在这个实验中,存在一个实验现象,就是你的自测运行输出结果与实验要求输出结果一模一样也不能通过,为什么呢?答:这个不知道算不算是头歌实验平台存在bug,一般我们在编写程序代码中,要求格式都是英文格式,但是在这个实验测试
- 分布式二级缓存组件实战(Redis+Caffeine实现)
鸨哥学JAVA
程序员Java编程redis缓存分布式
所谓二级缓存缓存就是将数据从读取较慢的介质上读取出来放到读取较快的介质上,如磁盘-->内存。平时我们会将数据存储到磁盘上,如:数据库。如果每次都从数据库里去读取,会因为磁盘本身的IO影响读取速度,所以就有了像redis这种的内存缓存。可以将数据读取出来放到内存里,这样当需要获取数据时,就能够直接从内存中拿到数据返回,能够很大程度的提高速度。但是一般redis是单独部署成集群,所以会有网络IO上的消
- 使用 Caffeine 和 Redis 实现高效的二级缓存架构
微技术
redis架构数据库缓存
在现代应用开发中,缓存是提升系统性能的关键手段。为了兼顾本地缓存的高性能和分布式缓存的扩展能力,常见的实现方式是结合使用Caffeine和Redis实现二级缓存架构。本文将详细介绍如何通过SpringBoot实现一个Caffeine+Redis二级缓存,并通过合理的架构设计和代码实现,确保缓存的一致性、性能和容错性。一、需求与挑战1.多级缓存的需求:•一级缓存(Caffeine):快速响应,存储本
- AI赋能:高职院校实验实训教学如何拥抱人工智能浪潮?
武汉唯众智创
人工智能实训人工智能实验实训教学
随着信息技术的迅猛发展,人工智能技术已成为推动社会各行业转型升级的核心力量。它不仅在提升生产效率、优化管理流程、提高服务质量方面发挥着关键作用,也深刻影响着高职教育的专业发展和课程教学内容的改革。作为培养专业技术技能人才的摇篮,高职院校必须创新其教学模式和方法,以适应新的发展需求,从而培育出能够适应未来技术变革的高素质人才。特别是在实验实训教学领域,人工智能的融入为职业教育改革提供了新的思路和工具
- 思科模拟器中环境条件设置第一步
etudou
python编程思科模拟器物联网python建筑节能
一直设想若上图中的温度在不同房间显示和物理环境一样的结果。于是乎看了经过实验原因是在模拟器的physcial中设置就可以实现不同的温度。接下来就是合理使用了!对类似实验感兴趣的同学,一起加入尝试:微信号imaguofeng2024年1月14日青海果洛玛多玛查理镇扎陵湖酒店
- 李开复的理性选择:AI代码生成工具时代,初创公司如何避免盲目坚持?
前端
近日,零一万物创始人李开复对公司调整和转型做出了回应,引发了业内广泛关注。他强调“今年是商业化的决胜之年”,并选择与阿里云合作,将部分团队并入阿里云的“产业大模型联合实验室”。这引发了我们对初创公司发展策略,特别是如何在AI代码生成工具等高成本领域进行理性选择的思考。李开复的经验,为我们提供了宝贵的借鉴。李开复指出,初创公司第一年的打法未必适用于第二年,调整和转型是创业的必然。他坦言,大模型预训练
- 智能优化算法应用:堆优化算法优化脉冲耦合神经网络的图像自动分割
智能算法研学社(Jack旭)
智能优化算法应用图像分割算法神经网络人工智能
智能优化算法应用:堆优化算法优化脉冲耦合神经网络的图像自动分割文章目录智能优化算法应用:堆优化算法优化脉冲耦合神经网络的图像自动分割1.堆优化算法2.PCNN网络3.实验结果4.参考文献5.Matlab代码摘要:本文利用堆优化算法对脉冲耦合神经网络的参数进行优化,以信息熵作为适应度函数,提高其图像分割的性能。1.堆优化算法堆优化算法原理请参考:https://blog.csdn.net/u0118
- MySQL表的创建实验
谁把我睡的觉偷了xhxh
mysql数据库
创建并使用数据库mydb6_product。mysql>createdatabasemydb6_product;QueryOK,1rowaffected(0.01sec)mysql>usemydb6_product;Databasechanged新建employees表。对于gender,有默认值意味着不为空,在建表时可以选择不写notnull;mysql>createtableemployees
- RT-DETR改进策略【Neck】| PRCV 2023,SBA(Selective Boundary Aggregation):特征融合模块,描绘物体轮廓重新校准物体位置,解决边界模糊问题
Limiiiing
RT-DETR改进专栏人工智能计算机视觉深度学习RT-DETR
一、本文介绍本文主要利用DuAT中的SBA模块优化RT-DETR的目标检测网络模型。SBA模块借鉴了医疗图像分割中处理边界信息的独特思路,通过创新性的结构设计,在维持合理计算复杂度的基础上,巧妙融合浅层的边界细节特征与深层的语义信息,实现边界特征的精准提取与语义信息的有效整合。将其应用于RT-DETR的改进过程中,能够使模型着重聚焦于目标物体的边界区域,降低背景及其他无关信息的影响,强化目标物体的
- H3C 本地端口镜像配置
M建
网工生涯知识库交换机端口镜像
H3C本地端口镜像配置实验拓扑实验需求PC1和PC2通过端口GigabitEthernet1/0/2和GigabitEthernet1/0/3分别连接,并通过端口GigabitEthernet1/0/1连接监控设备。通过配置源端口方式的本地端口镜像,使监控设备可以监控所有进、出PC1和PC2的报文。实验步骤创建本地镜像组1[SW]mirroring-group1local配置本地镜像组1的源端口,
- el-table指定列合并
qq_43383282
javascriptvue.jsecmascript
最近有需求关于实现表格指定列相同数据合并,实现效果如下:非原创,实验出两种方法,总结记录如下:table标签使用:span-method="objectSpanMethod"方法一return{tableColumnList:[{"field":"businessDeptName","fieldName":"业务部门",},{"field":"type","fieldName":"资源类型code
- 网络实验——使用GNS3进行NAT配置
浅浅爱默默
网络
一、NAT1、概念NAT:网络地址转换实现将内网私有IP地址转换为公网IP地址解决公网IP地址数目不足的问题可保护内网IP地址的私密性,起到一定的安全性还可实现企业内多个私有IP网段重叠问题2、NAT分类静态NAT:唯一的私有IP------映射------唯一的公网IP(映射关系确定,永久保存)动态NAT:多个私有IP------映射------多个公网IP(映射关系不确定,向外访问时建立映射关
- 计算机网络实验 三个路由器,计算机网络-实验三-路由器基本配置.doc
kitenancy
计算机网络实验三个路由器
计算机网络-实验三-路由器基本配置北京信息科技大学信息管理学院(课程设计)实验报告实验名称静态路由配置实验地点实验时间课程设计目的:(1)掌握路由器在网络中的作用。(2)掌握路由器的组成,路由器设备的选型。(3)掌握网络模拟仿真软件Boson的使用。(4)通过仿真软件的使用掌握Cisco路由器的基本配置方法,熟练掌握路由器网间网操作系统软件IOS的应用,理解Cisco26XX系列路由器基本配置方法
- STM32的USART串口通讯
我 淦
嵌入式stm32
文章目录一、寄存器与固件库1、基于寄存器方式的开发特点2、基于固态库方式的开发特点二、STM32的USART串口通讯程序STM32的USART简介1、实验要求2、实验环境3、实验准备4、实验代码5、程序烧录6、实验结果三、总结一、寄存器与固件库基于寄存器与基于固件库的stm32LED流水灯例子的编程方式差异比较:1、基于寄存器方式的开发特点(1)具体参数更直观(2)程序运行占用资源少(3)寄存器更
- YOLOv8改进,YOLOv8检测头融合DiverseBranchBlock,并添加小目标检测层(四头检测),适合目标检测、分割等
挂科边缘
YOLOv8改进YOLO目标检测人工智能计算机视觉深度学习
摘要一种卷积神经网络(ConvNet)的通用构建模块,以在不增加推理时间成本的情况下提高性能。该模块被命名为多样分支块(DiverseBranchBlock,DBB),通过结合不同尺度和复杂度的多样分支来丰富特征空间,包括卷积序列、多尺度卷积和平均池化,从而增强单个卷积的表示能力。在训练后,DBB可以等效地转换为一个单独的卷积层以进行部署。与新型ConvNet架构的进步不同,DBB在保持宏观架构的
- YOLOv10改进,YOLOv10改进主干网络为GhostNetV3(2024年华为的轻量化架构,全网首发),助力涨点
挂科边缘
YOLOv10改进YOLO计算机视觉目标检测人工智能python深度学习
摘要GhostNetV3是由华为诺亚方舟实验室的团队发布的,于2024年4月发布。摘要:紧凑型神经网络专为边缘设备上的应用设计,具备更快的推理速度,但性能相对适中。然而,紧凑型模型的训练策略目前借鉴自传统模型,这忽略了它们在模型容量上的差异,可能阻碍紧凑型模型的性能提升。在本文中,通过系统地研究不同训练成分的影响,我们介绍了一种用于紧凑型模型的强大训练策略。我们发现,适当的重参数化和知识蒸馏设计对
- 【YOLOv8改进】 YOLOv8 更换骨干网络之 GhostNet :通过低成本操作获得更多特征 (论文笔记+引入代码)
YOLO大师
YOLO论文阅读
YOLO目标检测创新改进与实战案例专栏专栏目录:YOLO有效改进系列及项目实战目录包含卷积,主干注意力,检测头等创新机制以及各种目标检测分割项目实战案例专栏链接:YOLO基础解析+创新改进+实战案例介绍摘要在嵌入式设备上部署卷积神经网络(CNNs)由于有限的内存和计算资源而变得困难。特征图中的冗余是那些成功的CNNs的一个重要特性,但在神经架构设计中很少被研究。本文提出了一种新颖的Ghost模块,
- 传感器融合(UWB+IMU+超声波),使用卡尔曼滤波器和3种不同的多点定位算法(最小二乘、递归最小二乘和梯度下降)研究(Matlab代码实现)
科研_研学社
算法matlab开发语言
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述一、引言二、传感器介绍(一)UWB(超宽带)(二)IMU(惯性测量单元)(三)超声波传感器三、定位算法(一)卡尔曼滤波器(二)多点定位算法1.最小二乘法2.递归最小二乘法3.梯度下降法四、系统架构五、实验设计六、结果与讨论七、结论2运行结果3参考文献
- 基于Ubuntu(x86)系统和STM32(Keil)编写C程序分别进行编程、验证
迷信的兔子
ubuntustm32单片机linuxkeilmdk
文章目录实验内容一、基本概念(一)、全局变量(二)、局部变量(三)、堆和栈二、编程验证(一)、基于Ubuntu用Linux系统编写C程序(二)、基于STM32用Keil编写C程序三、归纳分析四、总结五、参考文献实验内容实验内容:编写一个C程序,重温全局变量、局部变量、堆、栈等概念,在Ubuntu(x86)系统和STM32(Keil)中分别进行编程、验证(STM32通过串口printf信息到上位机串
- 安装python3.12.2环境(实验机器银河麒麟高级服务器)
Red丶哞
桌面运维Pythonlinux运维服务器
1.下载官网Python安装包wgethttps://www.python.org/ftp/python/3.12.2/Python-3.12.2.tar.xz1.1解压tar-xfPython-3.12.2.tar.xz解压完后切换到Python-3.12.2文件夹(这里根据自己解压的文件夹路径)cd/usr/packages/Python-3.12.2/1.2升级软件包管理器CentOS系统:
- YOLOv9改进,YOLOv9检测头融合,适合目标检测、分割任务
挂科边缘
YOLOv9改进目标检测人工智能计算机视觉YOLO
摘要空间注意力已广泛应用于提升卷积神经网络(CNN)的性能,但它存在一定的局限性。作者提出了一个新的视角,认为空间注意力机制本质上解决了卷积核参数共享的问题。然而,空间注意力生成的注意力图信息对于大尺寸卷积核来说是不足够的。因此,提出了一种新型的注意力机制——感受野注意力(RFA)。现有的空间注意力机制,如卷积块注意力模块(CBAM)和协调注意力(CA),仅关注空间特征,未能完全解决卷积核参数共享
- YOLOv8改进,YOLOv8检测头融合RFAConv卷积,并添加小目标检测层(四头检测),适合目标检测、分割等
挂科边缘
YOLOv8改进YOLO目标检测人工智能计算机视觉深度学习
摘要空间注意力已广泛应用于提升卷积神经网络(CNN)的性能,但它存在一定的局限性。作者提出了一个新的视角,认为空间注意力机制本质上解决了卷积核参数共享的问题。然而,空间注意力生成的注意力图信息对于大尺寸卷积核来说是不足够的。因此,提出了一种新型的注意力机制——感受野注意力(RFA)。现有的空间注意力机制,如卷积块注意力模块(CBAM)和协调注意力(CA),仅关注空间特征,未能完全解决卷积核参数共享
- 使用MoA(Mixture of Agents)混合智能体技术,结合多个开源大语言模型如Llama3、phi-3和Mistral,实现一个强大的AI智能体
fc&&fl
大模型实战应用人工智能语言模型自然语言处理
1.简介论文简介:论文提出了一种称为混合智能体(Mixture-of-Agents,MoA)的方法,利用多个大语言模型(LLM)的集体智慧来提高自然语言理解和生成任务的性能。MoA采用了分层结构,每一层包含多个LLM智能体。每个智能体都将前一层所有智能体的输出作为辅助信息来生成自己的回答。通过迭代地综合和优化回答,MoA可以充分利用不同LLM的独特优势。实验发现,即使其他模型提供的辅助回答质量较低
- PHP,安卓,UI,java,linux视频教程合集
cocos2d-x小菜
javaUIPHPandroidlinux
╔-----------------------------------╗┆
- 各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
bozch
.net.net mvc
在.net mvc5中,在执行某一操作的时候,出现了如下错误:
各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
经查询当前的操作与错误内容无关,经过对错误信息的排查发现,事故出现在数据库迁移上。
回想过去: 在迁移之前已经对数据库进行了添加字段操作,再次进行迁移插入XXX字段的时候,就会提示如上错误。
&
- Java 对象大小的计算
e200702084
java
Java对象的大小
如何计算一个对象的大小呢?
 
- Mybatis Spring
171815164
mybatis
ApplicationContext ac = new ClassPathXmlApplicationContext("applicationContext.xml");
CustomerService userService = (CustomerService) ac.getBean("customerService");
Customer cust
- JVM 不稳定参数
g21121
jvm
-XX 参数被称为不稳定参数,之所以这么叫是因为此类参数的设置很容易引起JVM 性能上的差异,使JVM 存在极大的不稳定性。当然这是在非合理设置的前提下,如果此类参数设置合理讲大大提高JVM 的性能及稳定性。 可以说“不稳定参数”
- 用户自动登录网站
永夜-极光
用户
1.目标:实现用户登录后,再次登录就自动登录,无需用户名和密码
2.思路:将用户的信息保存为cookie
每次用户访问网站,通过filter拦截所有请求,在filter中读取所有的cookie,如果找到了保存登录信息的cookie,那么在cookie中读取登录信息,然后直接
- centos7 安装后失去win7的引导记录
程序员是怎么炼成的
操作系统
1.使用root身份(必须)打开 /boot/grub2/grub.cfg 2.找到 ### BEGIN /etc/grub.d/30_os-prober ### 在后面添加 menuentry "Windows 7 (loader) (on /dev/sda1)" { 
- Oracle 10g 官方中文安装帮助文档以及Oracle官方中文教程文档下载
aijuans
oracle
Oracle 10g 官方中文安装帮助文档下载:http://download.csdn.net/tag/Oracle%E4%B8%AD%E6%96%87API%EF%BC%8COracle%E4%B8%AD%E6%96%87%E6%96%87%E6%A1%A3%EF%BC%8Coracle%E5%AD%A6%E4%B9%A0%E6%96%87%E6%A1%A3 Oracle 10g 官方中文教程
- JavaEE开源快速开发平台G4Studio_V3.2发布了
無為子
AOPoraclemysqljavaeeG4Studio
我非常高兴地宣布,今天我们最新的JavaEE开源快速开发平台G4Studio_V3.2版本已经正式发布。大家可以通过如下地址下载。
访问G4Studio网站
http://www.g4it.org
G4Studio_V3.2版本变更日志
功能新增
(1).新增了系统右下角滑出提示窗口功能。
(2).新增了文件资源的Zip压缩和解压缩
- Oracle常用的单行函数应用技巧总结
百合不是茶
日期函数转换函数(核心)数字函数通用函数(核心)字符函数
单行函数; 字符函数,数字函数,日期函数,转换函数(核心),通用函数(核心)
一:字符函数:
.UPPER(字符串) 将字符串转为大写
.LOWER (字符串) 将字符串转为小写
.INITCAP(字符串) 将首字母大写
.LENGTH (字符串) 字符串的长度
.REPLACE(字符串,'A','_') 将字符串字符A转换成_
- Mockito异常测试实例
bijian1013
java单元测试mockito
Mockito异常测试实例:
package com.bijian.study;
import static org.mockito.Mockito.mock;
import static org.mockito.Mockito.when;
import org.junit.Assert;
import org.junit.Test;
import org.mockito.
- GA与量子恒道统计
Bill_chen
JavaScript浏览器百度Google防火墙
前一阵子,统计**网址时,Google Analytics(GA) 和量子恒道统计(也称量子统计),数据有较大的偏差,仔细找相关资料研究了下,总结如下:
为何GA和量子网站统计(量子统计前身为雅虎统计)结果不同?
首先:没有一种网站统计工具能保证百分之百的准确出现该问题可能有以下几个原因:(1)不同的统计分析系统的算法机制不同;(2)统计代码放置的位置和前后
- 【Linux命令三】Top命令
bit1129
linux命令
Linux的Top命令类似于Windows的任务管理器,可以查看当前系统的运行情况,包括CPU、内存的使用情况等。如下是一个Top命令的执行结果:
top - 21:22:04 up 1 day, 23:49, 1 user, load average: 1.10, 1.66, 1.99
Tasks: 202 total, 4 running, 198 sl
- spring四种依赖注入方式
白糖_
spring
平常的java开发中,程序员在某个类中需要依赖其它类的方法,则通常是new一个依赖类再调用类实例的方法,这种开发存在的问题是new的类实例不好统一管理,spring提出了依赖注入的思想,即依赖类不由程序员实例化,而是通过spring容器帮我们new指定实例并且将实例注入到需要该对象的类中。依赖注入的另一种说法是“控制反转”,通俗的理解是:平常我们new一个实例,这个实例的控制权是我
- angular.injector
boyitech
AngularJSAngularJS API
angular.injector
描述: 创建一个injector对象, 调用injector对象的方法可以获得angular的service, 或者用来做依赖注入. 使用方法: angular.injector(modules, [strictDi]) 参数详解: Param Type Details mod
- java-同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待
bylijinnan
Integer
public class PC {
/**
* 题目:生产者-消费者。
* 同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待。
*/
private static final Integer[] val=new Integer[10];
private static
- 使用Struts2.2.1配置
Chen.H
apachespringWebxmlstruts
Struts2.2.1 需要如下 jar包: commons-fileupload-1.2.1.jar commons-io-1.3.2.jar commons-logging-1.0.4.jar freemarker-2.3.16.jar javassist-3.7.ga.jar ognl-3.0.jar spring.jar
struts2-core-2.2.1.jar struts2-sp
- [职业与教育]青春之歌
comsci
教育
每个人都有自己的青春之歌............但是我要说的却不是青春...
大家如果在自己的职业生涯没有给自己以后创业留一点点机会,仅仅凭学历和人脉关系,是难以在竞争激烈的市场中生存下去的....
&nbs
- oracle连接(join)中使用using关键字
daizj
JOINoraclesqlusing
在oracle连接(join)中使用using关键字
34. View the Exhibit and examine the structure of the ORDERS and ORDER_ITEMS tables.
Evaluate the following SQL statement:
SELECT oi.order_id, product_id, order_date
FRO
- NIO示例
daysinsun
nio
NIO服务端代码:
public class NIOServer {
private Selector selector;
public void startServer(int port) throws IOException {
ServerSocketChannel serverChannel = ServerSocketChannel.open(
- C语言学习homework1
dcj3sjt126com
chomework
0、 课堂练习做完
1、使用sizeof计算出你所知道的所有的类型占用的空间。
int x;
sizeof(x);
sizeof(int);
# include <stdio.h>
int main(void)
{
int x1;
char x2;
double x3;
float x4;
printf(&quo
- select in order by , mysql排序
dcj3sjt126com
mysql
If i select like this:
SELECT id FROM users WHERE id IN(3,4,8,1);
This by default will select users in this order
1,3,4,8,
I would like to select them in the same order that i put IN() values so:
- 页面校验-新建项目
fanxiaolong
页面校验
$(document).ready(
function() {
var flag = true;
$('#changeform').submit(function() {
var projectScValNull = true;
var s ="";
var parent_id = $("#parent_id").v
- Ehcache(02)——ehcache.xml简介
234390216
ehcacheehcache.xml简介
ehcache.xml简介
ehcache.xml文件是用来定义Ehcache的配置信息的,更准确的来说它是定义CacheManager的配置信息的。根据之前我们在《Ehcache简介》一文中对CacheManager的介绍我们知道一切Ehcache的应用都是从CacheManager开始的。在不指定配置信
- junit 4.11中三个新功能
jackyrong
java
junit 4.11中两个新增的功能,首先是注解中可以参数化,比如
import static org.junit.Assert.assertEquals;
import java.util.Arrays;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.junit.runn
- 国外程序员爱用苹果Mac电脑的10大理由
php教程分享
windowsPHPunixMicrosoftperl
Mac 在国外很受欢迎,尤其是在 设计/web开发/IT 人员圈子里。普通用户喜欢 Mac 可以理解,毕竟 Mac 设计美观,简单好用,没有病毒。那么为什么专业人士也对 Mac 情有独钟呢?从个人使用经验来看我想有下面几个原因:
1、Mac OS X 是基于 Unix 的
这一点太重要了,尤其是对开发人员,至少对于我来说很重要,这意味着Unix 下一堆好用的工具都可以随手捡到。如果你是个 wi
- 位运算、异或的实际应用
wenjinglian
位运算
一. 位操作基础,用一张表描述位操作符的应用规则并详细解释。
二. 常用位操作小技巧,有判断奇偶、交换两数、变换符号、求绝对值。
三. 位操作与空间压缩,针对筛素数进行空间压缩。
&n
- weblogic部署项目出现的一些问题(持续补充中……)
Everyday都不同
weblogic部署失败
好吧,weblogic的问题确实……
问题一:
org.springframework.beans.factory.BeanDefinitionStoreException: Failed to read candidate component class: URL [zip:E:/weblogic/user_projects/domains/base_domain/serve
- tomcat7性能调优(01)
toknowme
tomcat7
Tomcat优化: 1、最大连接数最大线程等设置
<Connector port="8082" protocol="HTTP/1.1"
useBodyEncodingForURI="t
- PO VO DAO DTO BO TO概念与区别
xp9802
javaDAO设计模式bean领域模型
O/R Mapping 是 Object Relational Mapping(对象关系映射)的缩写。通俗点讲,就是将对象与关系数据库绑定,用对象来表示关系数据。在O/R Mapping的世界里,有两个基本的也是重要的东东需要了解,即VO,PO。
它们的关系应该是相互独立的,一个VO可以只是PO的部分,也可以是多个PO构成,同样也可以等同于一个PO(指的是他们的属性)。这样,PO独立出来,数据持