- stable diffusion和GAN网络的区别,优点缺点是什么
爱好很多的算法工程师
SD大模型AIGC笔记
稳定扩散(stablediffusion)和生成对抗网络(GAN)是两种不同的深度学习方法。稳定扩散是一种无监督学习方法,用于图像超分辨率重建。它基于扩散过程模型,通过在不同的时间步骤中对图像进行重建来增加分辨率。该方法能够有效地增加图像的细节,并产生更高质量的图像。其优点包括:无监督学习:稳定扩散不需要使用任何带标签的训练数据,因此可以用于无监督任务。高分辨率重建:稳定扩散能够通过迭代过程逐渐增
- [超分辨率重建]ESRGAN算法训练自己的数据集过程
Cr_南猫
超分辨率重建超分辨率重建人工智能深度学习
一、下载数据集及项目包1.数据集1.1文件夹框架的介绍,如下图所示:主要有train和val,分别有高清(HR)和低清(LR)的图像。1.2原图先通过分割尺寸的脚本先将数据集图片处理成两个相同的图像组(HR和LR)。如训练x4的ESRGAN模型,那么我们需要将HR的图像尺寸与LR的图像尺寸比例是4:1。在我的训练中,我将HR的图像尺寸分割成了480x480,LR的图像分割成了120x120。如下图
- 【2023 CCF 大数据与计算智能大赛】基于TPU平台实现超分辨率重建模型部署 基于QuickRNet的TPU超分模型部署
算能开发者社区
大数据超分辨率重建人工智能
2023CCF大数据与计算智能大赛《赛题名称》基于QuickRNet的TPU超分模型部署巴黎欧莱雅林松智能应用业务部算法工程师中信科移动中国-北京
[email protected]团队简介巴黎欧莱雅团队包含一个队长和零个队员。队长林松,研究生学历,2019-2022在中国矿业大学(北京)攻读硕士学位,于2022年7月加入中信科移动公司,现在在智能应用业务部负责视觉AI算法的落地部署,是一名算法工程师,主要擅长
- 【2023 CCF 大数据与计算智能大赛】基于TPU平台实现超分辨率重建模型部署 基于Real-ESRGAN的TPU超分模型部署
算能开发者社区
大数据超分辨率重建人工智能
2023CCF大数据与计算智能大赛《基于TPU平台实现超分辨率重建模型部署》洋洋很棒李鹏飞算法工程师中国-烟台
[email protected]团队简介本人从事工业、互联网场景传统图像算法及深度学习算法开发、部署工作。其中端侧算法开发及部署工作5年时间。摘要本文是《基于TPU平台实现超分辨率重建模型部署》方案中算法方案的说明。本作品算法模型选用的是Real-ESRGAN。Real-ESRGAN是基
- 使用开源 Upscayl 工具放大图片
winfredzhang
人工智能Upscayl放大开源
Upscayl是一个基于人工智能的图像放大工具,可以用来将低分辨率的图片放大到高分辨率。Upscayl使用了一种称为超分辨率重建的技术,可以生成逼真的高分辨率图像。在本教程中,我们将介绍如何使用Upscaly工具放大图片。准备工作下载:https://github.com/upscayl/upscayl/releases/download/v2.9.5/upscayl-2.9.5-win.exe安
- 【2023 CCF 大数据与计算智能大赛】基于TPU平台实现超分辨率重建模型部署 基于预训练ESPCN的轻量化图像超分辨率模型TPU部署方案
算能开发者社区
大数据超分辨率重建人工智能
2023CCF大数据与计算智能大赛《基于TPU平台实现超分辨率重建模型部署》作品名:基于预训练ESPCN的轻量化图像超分辨率模型TPU部署方案队伍名:Absofastlutely蒋松儒计算机科学与技术系硕士南京大学中国-江苏
[email protected]吕欢欢计算机科学与技术系博士南京大学中国-江苏
[email protected]张凯铭物理学系本科四川大学中国-四川283574
- TPU编程竞赛|算丰助力2023 CCF大数据与计算智能大赛!
算能开发者社区
人工智能算法
目录赛题介绍赛题背景赛题任务赛程安排初赛阶段2023/09/25-11/27决赛阶段2023/11/28-12/17评分机制奖项设置赛题奖项赛事奖项近日,第十一届2023CCF大数据与计算智能大赛(简称CCFBDCI)正式启动报名,本次大赛含竞技赛题、数字安全公开赛等十余道竞技及训练赛题。算丰不仅为本次大赛提供了赛题「基于TPU平台实现视频超分辨率重建模型部署」,也为参赛选手提供丰富的云端TPU资
- 【2023 CCF 大数据与计算智能大赛】基于TPU平台实现超分辨率重建模型部署 基于FSRCNN的TPU平台超分辨率模型部署方案
算能开发者社区
大数据超分辨率重建人工智能
- 模型实战(18)之C++ - tensorRT部署GAN模型实现人脸超分辨重建
明月醉窗台
#深度学习实战例程c++生成对抗网络人工智能神经网络visualstudio
模型实战(18)之C++-tensorRT部署GAN模型实现人脸超分辨重建一个实现人脸超分辨率重建的demo支持StyleGAN:GPENorGFPGAN通过C++-tensorrt快速部署,推理速度每帧在RTX3090上5.5ms+,RTX3050上10ms+下边是实现效果(图片来源于网络search,如若侵权,联系删除)下边给出实现步骤:1.模型转换下载模型至本地Downloadthemode
- 【图像重构】基于OMP算法实现图像重构附matlab代码
matlab科研助手
图像处理机器学习算法人工智能
1内容介绍为了提高可见光图像的识别和检测能力,提出基于OMP算法的可见光图像超分辨率重构方法.建立可见光图像的视觉信息采集模型,采用空间锚点邻域特征匹配方法进行的可见光图像超分辨特征分解,提取可见光图像边缘轮廓特征量,结合残差特征估计高分辨率图像特征融合和优化分割,建立可见光图像的超分辨率重建特征分布集,采用边缘信息空间区域融合方法进行可见光图像的像素信息融合和优化特征重组,提取可见光图像的模糊度
- YOLOv8改进 | 2023注意力篇 | HAttention(HAT)超分辨率重建助力小目标检测 (全网首发)
Snu77
YOLOv8系列专栏YOLO人工智能深度学习python计算机视觉超分辨率重建目标检测
一、本文介绍本文给大家带来的改进机制是HAttention注意力机制,混合注意力变换器(HAT)的设计理念是通过融合通道注意力和自注意力机制来提升单图像超分辨率重建的性能。通道注意力关注于识别哪些通道更重要,而自注意力则关注于图像内部各个位置之间的关系。HAT利用这两种注意力机制,有效地整合了全局的像素信息,从而提供更为精确的结果(这个注意力机制挺复杂的光代码就700+行),但是效果挺好的也是10
- 超分辨率重建——SAN训练自己数据集及推理测试(详细图文教程)
佐咖
超分辨率重建Pytorch深度学习超分辨率重建图像处理pythonpytorch
目录一、源码包下载二、数据集准备三、预训练权重文件四、训练环境五、训练5.1超参数修改5.2训练模型5.2.1命令方式训练5.2.2Configuration配置参数方式训练5.3模型保存六、推理测试6.1超参数修改6.2测试6.2.1命令方式测试6.2.2Configuration配置参数方式测试6.3测试结果6.4推理速度七、总结一、源码包下载源码包有官网提供的和我自己修改过代码提供的,建议学
- 人工智能超分辨率重建:揭秘图像的高清奇迹
鳗小鱼
人工智能资源分享(resource)人工智能超分辨率重建图像处理rnncnn神经网络机器学习
导言人工智能超分辨率重建技术,作为图像处理领域的一项重要创新,旨在通过智能算法提升图像的分辨率,带来更为清晰和细致的视觉体验。本文将深入研究人工智能在超分辨率重建方面的原理、应用以及技术挑战。1.超分辨率重建的基本原理单图超分辨率:利用深度学习模型,通过学习低分辨率图像与高分辨率图像的映射关系,实现对单张图像的重建。多图融合:结合多个视角或时间点的图像信息,进一步提升图像的清晰度。2.应用领域及典
- 视频超分辨率重建
zi_y_uan
超分辨率重建人工智能
使用基于GAN的超分辨率模型对视频进行超清修复,项目GitHub链接如下:https://github.com/emptysoal/VideoRestore如何使用具体参考链接中的README。
- 超分辨率重建
金戈鐡馬
超分辨率重建人工智能计算机视觉深度学习图像处理
意义客观世界的场景含有丰富多彩的信息,但是由于受到硬件设备的成像条件和成像方式的限制,难以获得原始场景中的所有信息。而且,硬件设备分辨率的限制会不可避免地使图像丢失某些高频细节信息。在当今信息迅猛发展的时代,在卫星遥感、医学影像、多媒体视频等领域中对图像质量的要求越来越高,人们不断寻求更高质量和更高分辨率的图像,来满足日益增长的需求。空间分辨率的大小是衡量图像质量的一个重要指标,也是将图像应用到实
- 基于深度学习的超分辨率综述
teacher_ma_
计算机视觉深度学习人工智能神经网络cnn
1.单图像超分辨率重建SISR方法框架由两部分组成,非线性映射学习和上采样模块。非线性映射学习模块负责完成LR到HR的映射,这过程中利用损失函数引导和监督学习的进程;上采样模块实现重建图像的放大,两个模块协同完成SISR1.1超分框架(1)前端上采样超分框架前端上采样避免在低维进行映射学习,降低了学习难度,但噪声和模糊也被放大,并且高维卷积运算增加计算量,消耗更多资源(2)后端上采样超分框架该框架
- 基于深度学习的单帧图像超分辨率重建综述
小蒋的技术栈记录
深度学习深度学习超分辨率重建人工智能
论文标题:基于深度学习的单帧图像超分辨率重建综述作者:吴靖,叶晓晶,黄峰,陈丽琼,王志锋,刘文犀发表日期:2022年9月阅读日期:2023.11.18研究背景:图像超分辨率重建是计算机视觉中的基本图像处理技术之一,不仅可以提高图像分辨率改善图像质量,还可以辅助其他计算机视觉任务.近年来,随着人工智能浪潮的兴起,基于深度学习的图像超分辨率重建也取得了显著进展.本文在简述图像超分辨率重建方法的基础上,
- 「需求广场」需求词更新明细(十六)
CSDN文库小助手
大数据pythonjavajavascriptmatlab
进入需求广场,选取你擅长的领域开始上传资源、获取流量吧!2022.7.12上线需求词:No.需求词No.需求词No.需求词1超分辨率重建95idea快捷键189pid调参2视频编解码96linux切换到root用户190openmv与arduino串口通信3fpga开发97c++编译器191git教程4浏览器插件98springboot注解192matlab解多项式方程5tomcat安装及配置教程
- 【Python&图像超分】Real-ESRGAN图像超分模型(超分辨率重建)详细安装和使用教程
RS迷途小书童
Python深度学习超分辨率重建计算机视觉人工智能深度学习图像处理
1前言图像超分是一种图像处理技术,旨在提高图像的分辨率,使其具有更高的清晰度和细节。这一技术通常用于图像重建、图像恢复、图像增强等领域,可以帮助我们更好地理解和利用图像信息。图像超分技术可以通过多种方法实现,包括插值算法、深度学习等。其中,深度学习的方法在近年来得到了广泛的关注和应用。基于深度学习的图像超分技术,可以利用深度神经网络学习图像的高频部分,从而提高了图像的分辨率和清晰度。目前应用较多的
- 【图像超分辨率重建】——EnhanceNet论文精读笔记
Zency_SUN
图像超分辨率重建论文精读超分辨率重建计算机视觉人工智能
2017-EnhanceNet:SingleImageSuper-ResolutionThroughAutomatedTextureSynthesis(EnhanceNet)基本信息作者:MehdiS.M.SajjadiBernhardSch¨olkopfMichaelHirsch期刊:ICCV引用:*摘要:单一图像超分辨率是指从单一低分辨率输入推断出高分辨率图像的任务。传统上,这项任务的算法性能
- 基于深度学习的图像超分辨率重建
wjhua_223
#超分辨率人工智能技术方向
最近开展图像超分辨率(ImageSuperResolution)方面的研究,做了一些列的调研,并结合本人的理解总结成本博文~(本博文仅用于本人的学习笔记,不做商业用途)本博文涉及的paper已经打包,供各位看客下载哈~https://download.csdn.net/download/gwplovekimi/10728916目录超分辨率(SuperResolution,SR)传统的图像超分辨率重
- 基于多尺度分形残差注意力网络的超分辨率重建算法
Van-bo
1024程序员节
1.引言深度神经网络可以显著提高超分辨率的质量,但现有方法难以充分利用低分辨率尺度特征和通道信息,从而阻碍了卷积神经网络的表达能力。针对此类问题,本章提出了一种多尺度分形残差注意力网络(Multi-scaleFractalResidualAttentionNetwork,MFRAN)。具体而言,MFRAN由分形残差块(FractalResidualBlock,FRB)、双路增强通道注意力(Dual
- 超分辨率重建数据集制作:生成低分辨率数据集
Alocus_
python超分辨率重建超分辨率重建人工智能图像处理
目录背景代码结果其他注意:超分主流有两种BI、BD。1.实际上公认的是使用MATLAB进行插值。2.Bicubic(双三次插值)方式。(BI方式)3.高斯模糊+双三次插值是另一种常用方式(BD方式)。4.目前有使用Python实现的上述BI、BD,但或多或少还是有差异。这里python实现必定和matlab实现之间有差别,使用时注意。(希望你务必看一下这一篇文章:图像/视频超分之降质过程)(我写一
- AI影像修复及图像超分辨率
理想失速
计算机视觉人工智能
AI图像修复软件主要包含人脸修复、图像超分等功能。人脸修复功能主要对图像上的人脸进行识别和修复,从模糊、缺损、噪声图像中恢复高质量人脸图像。图像超分功能主要对图像进行超分辨率重建,将低分辨率图像处理为高分辨率图像。链接:https://pan.baidu.com/s/1epX3FKdTGNyTe0c8LoIPCQ?pwd=9knh1、人脸修复功能—>人脸修复,启动人脸修复界面。选择图像文件和输出路
- CVPR 2018
来自吐槽星
深度学习在图像超分辨率重建中的应用http://cvmart.net/community/article/detail/11使用CNN生成图像先验,实现更广泛场景的盲图像去模糊http://cvmart.net/community/article/detail/206用u-net训练一个模型:输入是一个静态的帧,输出的预测的五帧光流信息,模型在youtube数据集上训练。https://arxiv
- 【代码实践】HAT代码Window平台下运行实践记录
一的千分之一
【代码实践】python深度学习
HAT是CVPR2023上的自然图像超分辨率重建论文《activatingMorePixelsinImageSuper-ResolutionTransformer》所提出的模型。本文旨在记录在Window系统下运行该官方代码(https://github.com/XPixelGroup/HAT)的过程,中间会遇到一些问题,供大家参考。环境安装参考官方代码,进行环境安装pipinstall-rreq
- 深度学习在图像识别领域还有哪些应用?
matlabgoodboy
深度学习人工智能
深度学习在图像识别领域的应用非常广泛,除了之前提到的图像分类、目标检测、语义分割和图像生成,还有其他一些应用。图像超分辨率重建:深度学习技术可以用于提高图像的分辨率,例如通过使用生成对抗网络(GAN)和变分自编码器(VAE)等技术,可以将低分辨率的图像转换为高分辨率的图像,从而提高了图像的清晰度和质量。图像风格迁移:深度学习可以用于将一张图像的风格应用到另一张图像上,例如使用GAN模型可以将一张照
- 【论文阅读】ICCV2021|超分辨重建论文整理和阅读
一的千分之一
【论文阅读】transformer深度学习计算机视觉
本文主要对ICCV2021中超分辨率重建相关论文进行整理与阅读。1.LearningASingleNetworkforScale-ArbitrarySuper-ResolutionPaper:https://arxiv.org/pdf/2004.03791.pdfCode:https://github.com/The-Learning本论文聚焦于非整数尺度和非对称的SR问题,如上采样1.5x2.5
- AI数字人:语音驱动面部模型及超分辨率重建Wav2Lip-HD
智慧医疗探索者
AI数字人技术人工智能超分辨率重建图像处理深度学习
1Wav2Lip-HD项目介绍数字人打造中语音驱动人脸和超分辨率重建两种必备的模型,它们被用于实现数字人的语音和图像方面的功能。通过Wav2Lip-HD项目可以快速使用这两种模型,完成高清数字人形象的打造。项目代码地址:github地址1.1语音驱动面部模型wav2lip语音驱动人脸技术主要是通过语音信号处理和机器学习等技术,实现数字人的语音识别和语音合成,从而实现数字人的语音交互功能。同时,结合
- 【图像超分辨率重建】——SwinIR论文阅读笔记
沉潜于
超分辨率重建笔记人工智能
SwinIR:ImageRestorationUsingSwinTransformer基本信息:期刊:ICCV2021摘要:图像恢复是一个长期存在的低级视觉问题,其目的是从低质量图像(例如,缩小、噪声和压缩图像)。虽然最先进的图像恢复方法是基于卷积神经网络,但很少有人尝试使用Transformers,这些Transformers在高级视觉任务中表现出令人印象深刻的性能。在本文中,我们提出了一个强基
- java类加载顺序
3213213333332132
java
package com.demo;
/**
* @Description 类加载顺序
* @author FuJianyong
* 2015-2-6上午11:21:37
*/
public class ClassLoaderSequence {
String s1 = "成员属性";
static String s2 = "
- Hibernate与mybitas的比较
BlueSkator
sqlHibernate框架ibatisorm
第一章 Hibernate与MyBatis
Hibernate 是当前最流行的O/R mapping框架,它出身于sf.net,现在已经成为Jboss的一部分。 Mybatis 是另外一种优秀的O/R mapping框架。目前属于apache的一个子项目。
MyBatis 参考资料官网:http:
- php多维数组排序以及实际工作中的应用
dcj3sjt126com
PHPusortuasort
自定义排序函数返回false或负数意味着第一个参数应该排在第二个参数的前面, 正数或true反之, 0相等usort不保存键名uasort 键名会保存下来uksort 排序是对键名进行的
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8&q
- DOM改变字体大小
周华华
前端
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- c3p0的配置
g21121
c3p0
c3p0是一个开源的JDBC连接池,它实现了数据源和JNDI绑定,支持JDBC3规范和JDBC2的标准扩展。c3p0的下载地址是:http://sourceforge.net/projects/c3p0/这里可以下载到c3p0最新版本。
以在spring中配置dataSource为例:
<!-- spring加载资源文件 -->
<bean name="prope
- Java获取工程路径的几种方法
510888780
java
第一种:
File f = new File(this.getClass().getResource("/").getPath());
System.out.println(f);
结果:
C:\Documents%20and%20Settings\Administrator\workspace\projectName\bin
获取当前类的所在工程路径;
如果不加“
- 在类Unix系统下实现SSH免密码登录服务器
Harry642
免密ssh
1.客户机
(1)执行ssh-keygen -t rsa -C "
[email protected]"生成公钥,xxx为自定义大email地址
(2)执行scp ~/.ssh/id_rsa.pub root@xxxxxxxxx:/tmp将公钥拷贝到服务器上,xxx为服务器地址
(3)执行cat
- Java新手入门的30个基本概念一
aijuans
javajava 入门新手
在我们学习Java的过程中,掌握其中的基本概念对我们的学习无论是J2SE,J2EE,J2ME都是很重要的,J2SE是Java的基础,所以有必要对其中的基本概念做以归纳,以便大家在以后的学习过程中更好的理解java的精髓,在此我总结了30条基本的概念。 Java概述: 目前Java主要应用于中间件的开发(middleware)---处理客户机于服务器之间的通信技术,早期的实践证明,Java不适合
- Memcached for windows 简单介绍
antlove
javaWebwindowscachememcached
1. 安装memcached server
a. 下载memcached-1.2.6-win32-bin.zip
b. 解压缩,dos 窗口切换到 memcached.exe所在目录,运行memcached.exe -d install
c.启动memcached Server,直接在dos窗口键入 net start "memcached Server&quo
- 数据库对象的视图和索引
百合不是茶
索引oeacle数据库视图
视图
视图是从一个表或视图导出的表,也可以是从多个表或视图导出的表。视图是一个虚表,数据库不对视图所对应的数据进行实际存储,只存储视图的定义,对视图的数据进行操作时,只能将字段定义为视图,不能将具体的数据定义为视图
为什么oracle需要视图;
&
- Mockito(一) --入门篇
bijian1013
持续集成mockito单元测试
Mockito是一个针对Java的mocking框架,它与EasyMock和jMock很相似,但是通过在执行后校验什么已经被调用,它消除了对期望 行为(expectations)的需要。其它的mocking库需要你在执行前记录期望行为(expectations),而这导致了丑陋的初始化代码。
&nb
- 精通Oracle10编程SQL(5)SQL函数
bijian1013
oracle数据库plsql
/*
* SQL函数
*/
--数字函数
--ABS(n):返回数字n的绝对值
declare
v_abs number(6,2);
begin
v_abs:=abs(&no);
dbms_output.put_line('绝对值:'||v_abs);
end;
--ACOS(n):返回数字n的反余弦值,输入值的范围是-1~1,输出值的单位为弧度
- 【Log4j一】Log4j总体介绍
bit1129
log4j
Log4j组件:Logger、Appender、Layout
Log4j核心包含三个组件:logger、appender和layout。这三个组件协作提供日志功能:
日志的输出目标
日志的输出格式
日志的输出级别(是否抑制日志的输出)
logger继承特性
A logger is said to be an ancestor of anothe
- Java IO笔记
白糖_
java
public static void main(String[] args) throws IOException {
//输入流
InputStream in = Test.class.getResourceAsStream("/test");
InputStreamReader isr = new InputStreamReader(in);
Bu
- Docker 监控
ronin47
docker监控
目前项目内部署了docker,于是涉及到关于监控的事情,参考一些经典实例以及一些自己的想法,总结一下思路。 1、关于监控的内容 监控宿主机本身
监控宿主机本身还是比较简单的,同其他服务器监控类似,对cpu、network、io、disk等做通用的检查,这里不再细说。
额外的,因为是docker的
- java-顺时针打印图形
bylijinnan
java
一个画图程序 要求打印出:
1.int i=5;
2.1 2 3 4 5
3.16 17 18 19 6
4.15 24 25 20 7
5.14 23 22 21 8
6.13 12 11 10 9
7.
8.int i=6
9.1 2 3 4 5 6
10.20 21 22 23 24 7
11.19
- 关于iReport汉化版强制使用英文的配置方法
Kai_Ge
iReport汉化英文版
对于那些具有强迫症的工程师来说,软件汉化固然好用,但是汉化不完整却极为头疼,本方法针对iReport汉化不完整的情况,强制使用英文版,方法如下:
在 iReport 安装路径下的 etc/ireport.conf 里增加红色部分启动参数,即可变为英文版。
# ${HOME} will be replaced by user home directory accordin
- [并行计算]论宇宙的可计算性
comsci
并行计算
现在我们知道,一个涡旋系统具有并行计算能力.按照自然运动理论,这个系统也同时具有存储能力,同时具备计算和存储能力的系统,在某种条件下一般都会产生意识......
那么,这种概念让我们推论出一个结论
&nb
- 用OpenGL实现无限循环的coverflow
dai_lm
androidcoverflow
网上找了很久,都是用Gallery实现的,效果不是很满意,结果发现这个用OpenGL实现的,稍微修改了一下源码,实现了无限循环功能
源码地址:
https://github.com/jackfengji/glcoverflow
public class CoverFlowOpenGL extends GLSurfaceView implements
GLSurfaceV
- JAVA数据计算的几个解决方案1
datamachine
javaHibernate计算
老大丢过来的软件跑了10天,摸到点门道,正好跟以前攒的私房有关联,整理存档。
-----------------------------华丽的分割线-------------------------------------
数据计算层是指介于数据存储和应用程序之间,负责计算数据存储层的数据,并将计算结果返回应用程序的层次。J
&nbs
- 简单的用户授权系统,利用给user表添加一个字段标识管理员的方式
dcj3sjt126com
yii
怎么创建一个简单的(非 RBAC)用户授权系统
通过查看论坛,我发现这是一个常见的问题,所以我决定写这篇文章。
本文只包括授权系统.假设你已经知道怎么创建身份验证系统(登录)。 数据库
首先在 user 表创建一个新的字段(integer 类型),字段名 'accessLevel',它定义了用户的访问权限 扩展 CWebUser 类
在配置文件(一般为 protecte
- 未选之路
dcj3sjt126com
诗
作者:罗伯特*费罗斯特
黄色的树林里分出两条路,
可惜我不能同时去涉足,
我在那路口久久伫立,
我向着一条路极目望去,
直到它消失在丛林深处.
但我却选了另外一条路,
它荒草萋萋,十分幽寂;
显得更诱人,更美丽,
虽然在这两条小路上,
都很少留下旅人的足迹.
那天清晨落叶满地,
两条路都未见脚印痕迹.
呵,留下一条路等改日再
- Java处理15位身份证变18位
蕃薯耀
18位身份证变15位15位身份证变18位身份证转换
15位身份证变18位,18位身份证变15位
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 201
- SpringMVC4零配置--应用上下文配置【AppConfig】
hanqunfeng
springmvc4
从spring3.0开始,Spring将JavaConfig整合到核心模块,普通的POJO只需要标注@Configuration注解,就可以成为spring配置类,并通过在方法上标注@Bean注解的方式注入bean。
Xml配置和Java类配置对比如下:
applicationContext-AppConfig.xml
<!-- 激活自动代理功能 参看:
- Android中webview跟JAVASCRIPT中的交互
jackyrong
JavaScripthtmlandroid脚本
在android的应用程序中,可以直接调用webview中的javascript代码,而webview中的javascript代码,也可以去调用ANDROID应用程序(也就是JAVA部分的代码).下面举例说明之:
1 JAVASCRIPT脚本调用android程序
要在webview中,调用addJavascriptInterface(OBJ,int
- 8个最佳Web开发资源推荐
lampcy
编程Web程序员
Web开发对程序员来说是一项较为复杂的工作,程序员需要快速地满足用户需求。如今很多的在线资源可以给程序员提供帮助,比如指导手册、在线课程和一些参考资料,而且这些资源基本都是免费和适合初学者的。无论你是需要选择一门新的编程语言,或是了解最新的标准,还是需要从其他地方找到一些灵感,我们这里为你整理了一些很好的Web开发资源,帮助你更成功地进行Web开发。
这里列出10个最佳Web开发资源,它们都是受
- 架构师之面试------jdk的hashMap实现
nannan408
HashMap
1.前言。
如题。
2.详述。
(1)hashMap算法就是数组链表。数组存放的元素是键值对。jdk通过移位算法(其实也就是简单的加乘算法),如下代码来生成数组下标(生成后indexFor一下就成下标了)。
static int hash(int h)
{
h ^= (h >>> 20) ^ (h >>>
- html禁止清除input文本输入缓存
Rainbow702
html缓存input输入框change
多数浏览器默认会缓存input的值,只有使用ctl+F5强制刷新的才可以清除缓存记录。
如果不想让浏览器缓存input的值,有2种方法:
方法一: 在不想使用缓存的input中添加 autocomplete="off";
<input type="text" autocomplete="off" n
- POJO和JavaBean的区别和联系
tjmljw
POJOjava beans
POJO 和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Pure Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比 POJO复杂很多, Java Bean 是可复用的组件,对 Java Bean 并没有严格的规
- java中单例的五种写法
liuxiaoling
java单例
/**
* 单例模式的五种写法:
* 1、懒汉
* 2、恶汉
* 3、静态内部类
* 4、枚举
* 5、双重校验锁
*/
/**
* 五、 双重校验锁,在当前的内存模型中无效
*/
class LockSingleton
{
private volatile static LockSingleton singleton;
pri