- 百度颠覆了自己,飞算JavaAI造福了中国程序员!
飞算JavaAI开发助手
百度
在当今这个科技日新月异的时代,企业纷纷寻求技术突破,以期在激烈的市场竞争中脱颖而出。百度,作为中国互联网行业的领军企业之一,凭借其强大的科技实力和创新能力,在人工智能等多个领域取得了显著成就,并正在逐步颠覆自身的传统形象。百度自成立之初,就将技术创新视为企业的生命线。从最初的搜索引擎技术,到如今的深度学习、自然语言处理、计算机视觉等前沿领域,百度始终走在技术革新的前沿。其自主研发的飞桨深度学习平台
- 【深度学习:进阶篇】--4.2.词嵌入和NLP
西柚小萌新吖(●ˇ∀ˇ●)
#深度学习深度学习自然语言处理人工智能
在RNN中词使用one_hot表示的问题假设有10000个词每个词的向量长度都为10000,整体大小太大没能表示出词与词之间的关系例如Apple与Orange会更近一些,Man与Woman会近一些,取任意两个向量计算内积都为0目录1.词嵌入1.1.特点1.3.word2vec介绍1.3.Word2Vec案例1.3.1.训练语料1.3.2.步骤1.3.3.代码2.测试代码1.词嵌入定义:指把一个维数
- 【深度学习】卷积神经网络(CNN)原理
chaser&upper
深度学习神经网络卷积计算机视觉
【深度学习】卷积神经网络原理1.卷积神经网络的组成2.卷积层2.1卷积运算过程3.padding-零填充3.1ValidandSame卷积3.2奇数维度的过滤器4.stride-步长5.多通道卷积5.1多卷积核(多个Filter)6.卷积总结7.池化层(Pooling)8.全连接层9.总结1.卷积神经网络的组成定义卷积神经网络由一个或多个卷积层、池化层以及全连接层等组成。与其他深度学习结构相比,卷
- 深度学习学习经验——卷积神经网络(CNN)
Linductor
深度学习学习经验深度学习学习cnn
卷积神经网络卷积神经网络(CNN)1.卷积神经网络的基本组成2.卷积操作3.激活函数(ReLU)4.池化操作5.全连接层6.卷积神经网络的完整实现项目示例项目目标1.加载数据2.卷积层:图像的特征探测器2.1第一个卷积层3.激活函数:增加非线性4.池化层:信息压缩器5.多层卷积和池化:逐层提取更高层次的特征6.全连接层:分类器7.模型训练和测试完整的项目示例代码总结卷积神经网络(CNN)卷积神经网
- 深度学习之分类手写数字的网络
newyork major
卷积神经网络CNN深度学习人工智能
面临的问题定义神经⽹络后,我们回到⼿写识别上来。我们可以把识别⼿写数字问题分成两个⼦问题:把包含许多数字的图像分成⼀系列单独的图像,每个包含单个数字;也就是把图像,分成6个单独的图像分类单独的数字我们将专注于编程解决第⼆个问题,分类单独的数字。这样是因为,⼀旦你有分类单独数字的有效⽅法,分割问题是不难解决的。⼀种⽅法是尝试不同的分割⽅式,⽤数字分类器对每⼀个切分⽚段打分;如果数字分类器对每⼀个⽚段
- 推荐文章:探索深度学习的不确定性边界 —— SDE-Net 开源项目解析
史多苹Thomas
推荐文章:探索深度学习的不确定性边界——SDE-Net开源项目解析SDE-NetCodeforpaper:SDE-Net:EquippingDeepNeuralnetworkwithUncertaintyEstimates项目地址:https://gitcode.com/gh_mirrors/sd/SDE-Net在当今的人工智能领域,深度神经网络(DNN)已经成为推动技术创新的基石。然而,其预测的
- 【Java】已解决java.sql.SQLRecoverableException异常
屿小夏
java开发语言
个人简介:某不知名博主,致力于全栈领域的优质博客分享|用最优质的内容带来最舒适的阅读体验!文末获取免费IT学习资料!文末获取更多信息精彩专栏推荐订阅收藏专栏系列直达链接相关介绍书籍分享点我跳转书籍作为获取知识的重要途径,对于IT从业者来说更是不可或缺的资源。不定期更新IT图书,并在评论区抽取随机粉丝,书籍免费包邮到家AI前沿点我跳转探讨人工智能技术领域的最新发展和创新,涵盖机器学习、深度学习、自然
- 深度学习流体力学【干货】
人工智能交叉前沿技术,
人工智能深度学习python机器学习
深度学习作为一种新兴的机器学习技术,为流体科学的研究提供了新的思路和方法。通过对大量数据的学习和分析,深度学习模型可以自动提取特征和模式,为流体科学中的复杂问题提供解决方案。然而,深度学习在流体科学中的应用还面临一些挑战,需要进一步研究和探索。未来,深度学习与传统流体力学方法的结合将成为流体科学研究的重要方向,多模态数据的融合、模型的可解释性、实时预测和控制等将是深度学习在流体科学中发展的重点。相
- 机器学习中为什么要用混合精度训练
十子木
机器学习机器学习人工智能
目录FP16与显存占用关系机器学习中一般使用混合精度训练:FP16计算+FP32存储关键变量。FP16与显存占用关系显存(VideoRAM,简称VRAM)是显卡(GPU)专用的内存。FP32(单精度浮点):传统深度学习默认使用32位浮点数每个参数占用`4字节`例如:1亿参数的模型→约400MB显存FP16(半精度浮点):每个参数占用`2字节`(直接减半)相同模型→约200MB显存双精度浮点(FP6
- I2C子系统面试指南:基础原理、经典问答与答题技巧全解析
嵌入式Jerry
Linux+内核面试职场和发展linux服务器运维单片机java
I2C子系统面试指南:基础原理、经典问答与答题技巧全解析关于本篇博文,B站视屏讲解链接,点击进入深度学习一、引言:为什么要深入掌握I2C子系统?在嵌入式、驱动开发、BSP移植、甚至AIoT行业,I2C几乎是绕不开的“基础功”。不管你是应聘Linux驱动开发、嵌入式软件工程师、SoC底层支持,还是BSP/系统调试,I2C的核心架构和调试经验都是面试高频关注点。掌握I2C子系统,关键不止是能写驱动,更
- KANN 是一个独立的轻量级 C 语言库,用于构建和训练中小型人工神经网络,例如多层感知器、卷积神经网络和递归神经网络(包括 LSTM 和 GRU)。它实现了基于图的逆模自动微分,并允许构建具有递归等
一、软件介绍文末提供程序和源码下载KANN是一个独立的轻量级C语言库,用于构建和训练中小型人工神经网络,例如多层感知器、卷积神经网络和递归神经网络(包括LSTM和GRU)。它实现了基于图的逆模自动微分,并允许构建具有递归、共享权重和多个输入/输出/成本的拓扑复杂神经网络。与TensorFlow等主流深度学习框架相比,KANN的可扩展性较低,但它的灵活性接近,代码库要小得多,并且仅依赖于标准C库。与
- AttnRNN:参数更少,却断档碾压LSTM/GRU的新RNN
wq舞s
人工智能python深度学习deeplearningai科技pytorch
研究者与发布者为:CSDNwq舞s,知乎wqwsgithubwqws突破性进展!新型注意力RNN(AttnRNN)在长序列任务中全面超越传统RNN模型在深度学习领域,循环神经网络(RNN)及其变体GRU和LSTM长期以来一直是处理序列数据的首选架构。然而,它们在长序列任务中始终存在信息遗忘和梯度消失等问题。今天,我很高兴地宣布一种全新的RNN架构——AttnRNN,它在多个长序列基准测试中全面超越
- AI人工智能领域深度学习的跨模态检索技术
AI学长带你学AI
AI人工智能与大数据应用开发AI应用开发高级指南人工智能深度学习ai
AI人工智能领域深度学习的跨模态检索技术关键词:跨模态检索、深度学习、多模态学习、特征提取、相似度计算、注意力机制、Transformer摘要:本文深入探讨了AI领域中基于深度学习的跨模态检索技术。我们将从基础概念出发,详细分析跨模态检索的核心算法原理、数学模型和实际应用。文章包含完整的Python实现示例,展示如何构建一个跨模态检索系统,并讨论当前的技术挑战和未来发展方向。通过本文,读者将全面理
- 工业缺陷检测深度学习方法综述
2301_80355452
深度学习人工智能
其被广泛地应用于无人质检、智能巡检、质量控制等各种生产与运维场景中.一.工业缺陷检测的背景与特点工业缺陷检测面临着诸多难点:缺陷样本匮乏、缺陷的可视性低、形状不规则、类型未知等,直接使用异常检测方法难以满足工业缺陷检测的任务需求.二.介绍工业缺陷检测问题的定义,分析研究难点与挑战异常:点异常、上下文异常和集群异常。点异常:又称为离群值(outliers)[9],描述数值上偏离正常样本的独立数据。与
- Python程序设计 第6章:函数和函数式编程
若北辰
Python程序设计python开发语言
Python程序设计Python是全球范围内最受欢迎的编程语言之一,学好Python将对个人职业生涯产生很大的助力,Python在机器学习、深度学习、数据挖掘等领域应用极为广泛。在数据科学家/数据分析师、人工智能工程师、网络安全工程师、软件工程师/全栈工程师、自动化测试工程师等岗位,年入50万,很普遍,学好Python,高薪就业不是问题,因此推出Python程序设计系列文章:Python程序设计第
- AI人工智能与OpenCV:实现智能图像编辑功能
AI智能探索者
AIAgent智能体开发实战人工智能opencv计算机视觉ai
AI人工智能与OpenCV:实现智能图像编辑功能关键词:人工智能、OpenCV、图像处理、计算机视觉、深度学习、智能编辑、图像增强摘要:本文深入探讨如何结合人工智能(AI)和OpenCV实现智能图像编辑功能。我们将从基础概念出发,详细介绍核心算法原理,展示实际代码实现,并分析典型应用场景。文章将涵盖从传统图像处理技术到深度学习方法的演进,重点讲解如何利用OpenCV和AI模型实现自动化的图像增强、
- 人工智能-基础篇-2-什么是机器学习?(ML,监督学习,半监督学习,零监督学习,强化学习,深度学习,机器学习步骤等)
weisian151
人工智能人工智能机器学习学习
1、什么是机器学习?机器学习(MachineLearning,ML)是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析等数学理论。其核心目标是让计算机通过分析数据,自动学习规律并构建模型,从而对未知数据进行预测或决策,而无需依赖显式的程序指令。基本思想:通过数据驱动的方式,使系统能够从经验(数据)中改进性能,形成对数据模式的抽象化表达。基本概念:模型:模型是对现实世界现
- 贝叶斯网络与深度学习的结合:图像识别和分类
AI天才研究院
AI人工智能与大数据计算AI大模型企业级应用开发实战自然语言处理人工智能语言模型编程实践开发语言架构设计
本文我将为您撰写一篇关于"贝叶斯网络与深度学习的结合:图像识别和分类"的技术博客文章。这篇文章将深入探讨贝叶斯网络和深度学习在图像识别和分类领域的结合应用。我会遵循您提供的要求和结构模板,确保文章内容全面、深入且易于理解。让我们开始吧。贝叶斯网络与深度学习的结合:图像识别和分类关键词:贝叶斯网络、深度学习、图像识别、图像分类、概率推理、卷积神经网络、不确定性建模文章目录贝叶斯网络与深度学习的结合:
- Halcon 初步了解
科学的发展-只不过是读大自然写的代码
图形编程c#视觉处理Halcon
1.Halcon概述Halcon是德国MVTec公司开发的一套完善的机器视觉算法包,也是一款功能强大的视觉处理软件,为工业自动化领域提供了全面的解决方案。它拥有应用广泛的机器视觉集成开发环境,提供了一套丰富的图像处理和机器视觉算法,可以在各种工业应用中进行图像分析、目标检测、测量、定位、识别等任务。Halcon的核心功能包括图像处理、特征提取与匹配、3D视觉、深度学习、条码识别、OCR识别以及视觉
- 如何在pytorch中使用tqdm:优雅实现训练进度监控
Ven%
简单入门pytorchpytorch人工智能python
文章目录为什么需要进度条?tqdm简介基础用法示例深度学习中的实战应用1.数据加载进度监控2.训练循环增强版3.验证阶段集成高级技巧与最佳实践1.自定义进度条样式2.嵌套进度条(多任务)3.分布式训练支持4.与日志系统集成性能优化建议完整训练流程示例常见问题解决方案总结掌握训练进度监控是深度学习工程师的基本功。本文将带你从零开始,深入探索如何用tqdm为深度学习训练添加专业级进度条。为什么需要进度
- 【Python】Hydra 用法详解
行码棋
#Pythonpython开发语言
Hydra官方文档Hydra(Python配置管理工具)1.引言在机器学习、深度学习和软件开发中,管理复杂的配置是一个常见的挑战。Hydra是一个强大的Python库,允许开发者轻松地管理和组织配置文件,支持动态参数覆盖、多层次配置和可组合配置等特性。2.安装HydraHydra可以通过pip直接安装:pipinstallhydra-core安装完成后,你可以使用hydra进行配置管理。3.基础用
- onnx模型部署 python_深度学习模型转换与部署那些事(含ONNX格式详细分析)
weixin_39759270
onnx模型部署python
背景深度学习模型在训练完成之后,部署并应用在生产环境的这一步至关重要,毕竟训练出来的模型不能只接受一些公开数据集和榜单的检验,还需要在真正的业务场景下创造价值,不能只是为了PR而躺在实验机器上在现有条件下,一般涉及到模型的部署就要涉及到模型的转换,而转换的过程也是随着对应平台的不同而不同,一般工程师接触到的平台分为GPU云平台、手机和其他嵌入式设备对于GPU云平台来说,在上面部署本应该是最轻松的事
- 从零开始理解Transformer模型:架构与应用
淮橘√
transformer深度学习人工智能
引言近年来,Transformer模型席卷了自然语言处理(NLP)领域,成为了深度学习中的明星架构。从Google提出的《AttentionisAllYouNeed》论文到ChatGPT、BERT等模型的广泛应用,Transformer以其强大的性能和灵活性改变了我们对序列建模的认知。本文将从零开始,深入浅出地解析Transformer的架构原理、核心组件以及实际应用场景,并提供一个简单的代码示例
- 基于深度学习的线上问诊系统设计与实现(Python+Django+MySQL)
神经网络15044
深度学习算法神经网络python深度学习django机器学习人工智能算法目标检测
基于深度学习的线上问诊系统设计与实现(Python+Django+MySQL)一、系统概述本系统结合YOLOv8目标检测和ResNet50图像分类算法,构建了一个智能线上问诊平台。系统支持用户上传医学影像(皮肤照片/X光片),自动分析并生成诊断报告,同时提供医生审核功能。二、技术栈后端框架:Django4.2数据库:MySQL8.0深度学习:YOLOv8:皮肤病变区域检测ResNet50:肺炎X光
- 深度学习中常见激活函数总结
向左转, 向右走ˉ
深度学习人工智能pytorchpython
以下是一份深度学习激活函数的系统总结,涵盖定义、类型、作用、应用及选择影响,便于你快速掌握核心知识:一、激活函数的定义在神经网络中,激活函数(ActivationFunction)是神经元计算输出的非线性变换函数,作用于加权输入和偏置之和:输出=f(加权和+偏置)核心价值:引入非线性,使神经网络能够拟合任意复杂函数(无激活函数的深度网络等价于单层线性模型)。二、常见激活函数类型1.线性函数(Lin
- FP16、BF16、INT8、INT4精度模型加载所需显存以及硬件适配的分析
herosunly
大模型精度BF16硬件适配
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。 本文主要介绍了FP16、INT8、INT4精度模型加载占用显存大小的分析,希望对学习大
- 智能办公与科研革命:ChatGPT+DeepSeek大模型在论文撰写、数据分析与AI建模中的实践指南
jwwkyjspt
机器学习SCI论文人工智能chatgpt语言模型机器学习
随着人工智能技术的快速发展,大语言模型如ChatGPT和DeepSeek在科研领域的应用正在为科研人员提供强大的支持。这些模型通过深度学习和大规模语料库训练,能够帮助科研人员高效地筛选文献、生成论文内容、进行数据分析和优化机器学习模型。ChatGPT和DeepSeek能够快速理解和生成复杂的语言,帮助研究人员在撰写论文时提高效率,不仅生成高质量的文章内容,还能优化论文结构和语言表达。在数据分析方面
- 【机器学习&深度学习】适合微调的模型选型指南
一叶千舟
深度学习【应用必备常识】深度学习人工智能
目录一、不同规模模型微调适用性二、微调技术类型对显存的影响三、选择建议(根据你的硬件)四、实际模型推荐五、不同模型适合人群六、推荐几个“非常适合微调”的模型七、推荐使用的微调技术八、场景选择示例场景1:智能客服(中文)场景2:法律问答(中文RAG)场景3:医学问答/健康咨询场景4:AI写作助手(中英文)场景5:代码补全/AI编程助手对比总结表九、不同参数模型特点9.1参数规模vs能力9.2微型模型
- 【机器学习&深度学习】本地部署 vs API调用:关键看显存!
一叶千舟
深度学习【应用必备常识】深度学习人工智能
目录一、本地部署VSAPI调用1.模型运行方式2.性能与速度3.成本4.隐私与安全5.何时选择哪种方式?二、为什么推荐本地部署?1️⃣零依赖网络和外部服务,更可靠稳定2️⃣无调用次数限制,更适合高频或批量推理3️⃣避免长期API费用,节省成本4️⃣保护用户隐私和数据安全5️⃣可自定义、深度优化6️⃣加载一次即可复用,低延迟高性能7️⃣离线可用(重要!)三、适合本地部署的情况四、本地部署条件4.1模
- 深度学习 vs 传统机器学习:哪个更适合你的项目?
AI大模型应用之禅
深度学习机器学习人工智能ai
深度学习vs传统机器学习:哪个更适合你的项目?关键词:深度学习、传统机器学习、特征工程、数据量、计算资源、项目选择、算法对比摘要:本文将用"炒菜"和"拼图"等生活案例,从核心原理、适用场景、资源需求等维度对比深度学习与传统机器学习。通过具体代码示例和真实项目场景分析,帮助开发者和企业决策者快速判断:你的项目该选深度学习还是传统机器学习?背景介绍目的和范围随着AI技术普及,"该用深度学习还是传统机器
- java观察者模式
3213213333332132
java设计模式游戏观察者模式
观察者模式——顾名思义,就是一个对象观察另一个对象,当被观察的对象发生变化时,观察者也会跟着变化。
在日常中,我们配java环境变量时,设置一个JAVAHOME变量,这就是被观察者,使用了JAVAHOME变量的对象都是观察者,一旦JAVAHOME的路径改动,其他的也会跟着改动。
这样的例子很多,我想用小时候玩的老鹰捉小鸡游戏来简单的描绘观察者模式。
老鹰会变成观察者,母鸡和小鸡是
- TFS RESTful API 模拟上传测试
ronin47
TFS RESTful API 模拟上传测试。
细节参看这里:https://github.com/alibaba/nginx-tfs/blob/master/TFS_RESTful_API.markdown
模拟POST上传一个图片:
curl --data-binary @/opt/tfs.png http
- PHP常用设计模式单例, 工厂, 观察者, 责任链, 装饰, 策略,适配,桥接模式
dcj3sjt126com
设计模式PHP
// 多态, 在JAVA中是这样用的, 其实在PHP当中可以自然消除, 因为参数是动态的, 你传什么过来都可以, 不限制类型, 直接调用类的方法
abstract class Tiger {
public abstract function climb();
}
class XTiger extends Tiger {
public function climb()
- hibernate
171815164
Hibernate
main,save
Configuration conf =new Configuration().configure();
SessionFactory sf=conf.buildSessionFactory();
Session sess=sf.openSession();
Transaction tx=sess.beginTransaction();
News a=new
- Ant实例分析
g21121
ant
下面是一个Ant构建文件的实例,通过这个实例我们可以很清楚的理顺构建一个项目的顺序及依赖关系,从而编写出更加合理的构建文件。
下面是build.xml的代码:
<?xml version="1
- [简单]工作记录_接口返回405原因
53873039oycg
工作
最近调接口时候一直报错,错误信息是:
responseCode:405
responseMsg:Method Not Allowed
接口请求方式Post.
- 关于java.lang.ClassNotFoundException 和 java.lang.NoClassDefFoundError 的区别
程序员是怎么炼成的
真正完成类的加载工作是通过调用 defineClass来实现的;
而启动类的加载过程是通过调用 loadClass来实现的;
就是类加载器分为加载和定义
protected Class<?> findClass(String name) throws ClassNotFoundExcept
- JDBC学习笔记-JDBC详细的操作流程
aijuans
jdbc
所有的JDBC应用程序都具有下面的基本流程: 1、加载数据库驱动并建立到数据库的连接。 2、执行SQL语句。 3、处理结果。 4、从数据库断开连接释放资源。
下面我们就来仔细看一看每一个步骤:
其实按照上面所说每个阶段都可得单独拿出来写成一个独立的类方法文件。共别的应用来调用。
1、加载数据库驱动并建立到数据库的连接:
Html代码
St
- rome创建rss
antonyup_2006
tomcatcmsxmlstrutsOpera
引用
1.RSS标准
RSS标准比较混乱,主要有以下3个系列
RSS 0.9x / 2.0 : RSS技术诞生于1999年的网景公司(Netscape),其发布了一个0.9版本的规范。2001年,RSS技术标准的发展工作被Userland Software公司的戴夫 温那(Dave Winer)所接手。陆续发布了0.9x的系列版本。当W3C小组发布RSS 1.0后,Dave W
- html表格和表单基础
百合不是茶
html表格表单meta锚点
第一次用html来写东西,感觉压力山大,每次看见别人发的都是比较牛逼的 再看看自己什么都还不会,
html是一种标记语言,其实很简单都是固定的格式
_----------------------------------------表格和表单
表格是html的重要组成部分,表格用在body里面的
主要用法如下;
<table>
&
- ibatis如何传入完整的sql语句
bijian1013
javasqlibatis
ibatis如何传入完整的sql语句?进一步说,String str ="select * from test_table",我想把str传入ibatis中执行,是传递整条sql语句。
解决办法:
<
- 精通Oracle10编程SQL(14)开发动态SQL
bijian1013
oracle数据库plsql
/*
*开发动态SQL
*/
--使用EXECUTE IMMEDIATE处理DDL操作
CREATE OR REPLACE PROCEDURE drop_table(table_name varchar2)
is
sql_statement varchar2(100);
begin
sql_statement:='DROP TABLE '||table_name;
- 【Linux命令】Linux工作中常用命令
bit1129
linux命令
不断的总结工作中常用的Linux命令
1.查看端口被哪个进程占用
通过这个命令可以得到占用8085端口的进程号,然后通过ps -ef|grep 进程号得到进程的详细信息
netstat -anp | grep 8085
察看进程ID对应的进程占用的端口号
netstat -anp | grep 进程ID
&
- 优秀网站和文档收集
白糖_
网站
集成 Flex, Spring, Hibernate 构建应用程序
性能测试工具-JMeter
Hmtl5-IOCN网站
Oracle精简版教程网站
鸟哥的linux私房菜
Jetty中文文档
50个jquery必备代码片段
swfobject.js检测flash版本号工具
- angular.extend
boyitech
AngularJSangular.extendAngularJS API
angular.extend 复制src对象中的属性去dst对象中. 支持多个src对象. 如果你不想改变一个对象,你可以把dst设为空对象{}: var object = angular.extend({}, object1, object2). 注意: angular.extend不支持递归复制. 使用方法: angular.extend(dst, src); 参数:
- java-谷歌面试题-设计方便提取中数的数据结构
bylijinnan
java
网上找了一下这道题的解答,但都是提供思路,没有提供具体实现。其中使用大小堆这个思路看似简单,但实现起来要考虑很多。
以下分别用排序数组和大小堆来实现。
使用大小堆:
import java.util.Arrays;
public class MedianInHeap {
/**
* 题目:设计方便提取中数的数据结构
* 设计一个数据结构,其中包含两个函数,1.插
- ajaxFileUpload 针对 ie jquery 1.7+不能使用问题修复版本
Chen.H
ajaxFileUploadie6ie7ie8ie9
jQuery.extend({
handleError: function( s, xhr, status, e ) {
// If a local callback was specified, fire it
if ( s.error ) {
s.error.call( s.context || s, xhr, status, e );
}
- [机器人制造原则]机器人的电池和存储器必须可以替换
comsci
制造
机器人的身体随时随地可能被外来力量所破坏,但是如果机器人的存储器和电池可以更换,那么这个机器人的思维和记忆力就可以保存下来,即使身体受到伤害,在把存储器取下来安装到一个新的身体上之后,原有的性格和能力都可以继续维持.....
另外,如果一
- Oracle Multitable INSERT 的用法
daizj
oracle
转载Oracle笔记-Multitable INSERT 的用法
http://blog.chinaunix.net/uid-8504518-id-3310531.html
一、Insert基础用法
语法:
Insert Into 表名 (字段1,字段2,字段3...)
Values (值1,
- 专访黑客历史学家George Dyson
datamachine
on
20世纪最具威力的两项发明——核弹和计算机出自同一时代、同一群年青人。可是,与大名鼎鼎的曼哈顿计划(第二次世界大战中美国原子弹研究计划)相 比,计算机的起源显得默默无闻。出身计算机世家的历史学家George Dyson在其新书《图灵大教堂》(Turing’s Cathedral)中讲述了阿兰·图灵、约翰·冯·诺依曼等一帮子天才小子创造计算机及预见计算机未来
- 小学6年级英语单词背诵第一课
dcj3sjt126com
englishword
always 总是
rice 水稻,米饭
before 在...之前
live 生活,居住
usual 通常的
early 早的
begin 开始
month 月份
year 年
last 最后的
east 东方的
high 高的
far 远的
window 窗户
world 世界
than 比...更
- 在线IT教育和在线IT高端教育
dcj3sjt126com
教育
codecademy
http://www.codecademy.com codeschool
https://www.codeschool.com teamtreehouse
http://teamtreehouse.com lynda
http://www.lynda.com/ Coursera
https://www.coursera.
- Struts2 xml校验框架所定义的校验文件
蕃薯耀
Struts2 xml校验Struts2 xml校验框架Struts2校验
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年7月11日 15:54:59 星期六
http://fa
- mac下安装rar和unrar命令
hanqunfeng
mac
1.下载:http://www.rarlab.com/download.htm 选择
RAR 5.21 for Mac OS X 2.解压下载后的文件 tar -zxvf rarosx-5.2.1.tar 3.cd rar sudo install -c -o $USER unrar /bin #输入当前用户登录密码 sudo install -c -o $USER rar
- 三种将list转换为map的方法
jackyrong
list
在本文中,介绍三种将list转换为map的方法:
1) 传统方法
假设有某个类如下
class Movie {
private Integer rank;
private String description;
public Movie(Integer rank, String des
- 年轻程序员需要学习的5大经验
lampcy
工作PHP程序员
在过去的7年半时间里,我带过的软件实习生超过一打,也看到过数以百计的学生和毕业生的档案。我发现很多事情他们都需要学习。或许你会说,我说的不就是某种特定的技术、算法、数学,或者其他特定形式的知识吗?没错,这的确是需要学习的,但却并不是最重要的事情。他们需要学习的最重要的东西是“自我规范”。这些规范就是:尽可能地写出最简洁的代码;如果代码后期会因为改动而变得凌乱不堪就得重构;尽量删除没用的代码,并添加
- 评“女孩遭野蛮引产致终身不育 60万赔偿款1分未得”医腐深入骨髓
nannan408
先来看南方网的一则报道:
再正常不过的结婚、生子,对于29岁的郑畅来说,却是一个永远也无法实现的梦想。从2010年到2015年,从24岁到29岁,一张张新旧不一的诊断书记录了她病情的同时,也清晰地记下了她人生的悲哀。
粗暴手术让人发寒
2010年7月,在酒店做服务员的郑畅发现自己怀孕了,可男朋友却联系不上。在没有和家人商量的情况下,她决定堕胎。
12月5日,
- 使用jQuery为input输入框绑定回车键事件 VS 为a标签绑定click事件
Everyday都不同
jspinput回车键绑定clickenter
假设如题所示的事件为同一个,必须先把该js函数抽离出来,该函数定义了监听的处理:
function search() {
//监听函数略......
}
为input框绑定回车事件,当用户在文本框中输入搜索关键字时,按回车键,即可触发search():
//回车绑定
$(".search").keydown(fun
- EXT学习记录
tntxia
ext
1. 准备
(1) 官网:http://www.sencha.com/
里面有源代码和API文档下载。
EXT的域名已经从www.extjs.com改成了www.sencha.com ,但extjs这个域名会自动转到sencha上。
(2)帮助文档:
想要查看EXT的官方文档的话,可以去这里h
- mybatis3的mapper文件报Referenced file contains errors
xingguangsixian
mybatis
最近使用mybatis.3.1.0时无意中碰到一个问题:
The errors below were detected when validating the file "mybatis-3-mapper.dtd" via the file "account-mapper.xml". In most cases these errors can be d