TensorFlow目标检测API训练自己的数据集——由.csv文件生成.record文件

记录一下自己是如何完成此项工作的,以防他日遗忘。
首先本人也是以前人所做的工作为基础,解决了一些自己在实现过程中遇到的前人没出现的和自己没注意到的问题。希望能帮到和我遇到同样问题的小伙伴。

由.csv文件生成.record文件的源码

  # From tensorflow/models/
  # Create train data:
  python generate_tfrecord.py --csv_input=data/tv_vehicle_labels.csv  --output_path=data/train.record
  # Create test data:
  python generate_tfrecord.py --csv_input=data/test_labels.csv  --output_path=data/test.record
"""
 
 
import os
import io
import pandas as pd
import tensorflow as tf
 
from PIL import Image
from object_detection.utils import dataset_util
from collections import namedtuple, OrderedDict
 
#将当前工作目录改为括号中的路径
os.chdir('F:\\tensorflow\\models\\research\\object_detection\\')
 
flags = tf.app.flags
flags.DEFINE_string('csv_input', '', 'Path to the CSV input')
flags.DEFINE_string('output_path', '', 'Path to output TFRecord')
FLAGS = flags.FLAGS
 
 
# TO-DO replace this with label map
#注意将对应的label改成自己的类别!!!!!!!!!!
def class_text_to_int(row_label):
    if row_label == 'ship':
        return 1
#    elif row_label == 'vehicle':
#        return 2
    else:
        None
 
 
def split(df, group):
    data = namedtuple('data', ['filename', 'object'])
    gb = df.groupby(group)
    return [data(filename, gb.get_group(x)) for filename, x in zip(gb.groups.keys(), gb.groups)]
 
 
def create_tf_example(group, path):
    with tf.gfile.GFile(os.path.join(path, '{}'.format(group.filename)), 'rb') as fid:
        encoded_jpg = fid.read()
    encoded_jpg_io = io.BytesIO(encoded_jpg)
    image = Image.open(encoded_jpg_io)
    width, height = image.size
 
    filename = group.filename.encode('utf8')
    image_format = b'png'
    xmins = []
    xmaxs = []
    ymins = []
    ymaxs = []
    classes_text = []
    classes = []
 
    for index, row in group.object.iterrows():
        xmins.append(row['xmin'] / width)
        xmaxs.append(row['xmax'] / width)
        ymins.append(row['ymin'] / height)
        ymaxs.append(row['ymax'] / height)
        classes_text.append(row['class'].encode('utf8'))
        classes.append(class_text_to_int(row['class']))
 
    tf_example = tf.train.Example(features=tf.train.Features(feature={
        'image/height': dataset_util.int64_feature(height),
        'image/width': dataset_util.int64_feature(width),
        'image/filename': dataset_util.bytes_feature(filename),
        'image/source_id': dataset_util.bytes_feature(filename),
        'image/encoded': dataset_util.bytes_feature(encoded_jpg),
        'image/format': dataset_util.bytes_feature(image_format),
        'image/object/bbox/xmin': dataset_util.float_list_feature(xmins),
        'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs),
        'image/object/bbox/ymin': dataset_util.float_list_feature(ymins),
        'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs),
        'image/object/class/text': dataset_util.bytes_list_feature(classes_text),
        'image/object/class/label': dataset_util.int64_list_feature(classes),
    }))
    return tf_example
 
 
def main(_):
    writer = tf.python_io.TFRecordWriter(FLAGS.output_path)
    path = os.path.join(os.getcwd(), 'images')
    examples = pd.read_csv(FLAGS.csv_input)
    grouped = split(examples, 'filename')
    for group in grouped:
        tf_example = create_tf_example(group, path)
        writer.write(tf_example.SerializeToString())
 
    writer.close()
    output_path = os.path.join(os.getcwd(), FLAGS.output_path)
    print('Successfully created the TFRecords: {}'.format(output_path))
 
 
if __name__ == '__main__':
    tf.app.run()

首先需要注意的是
python generate_tfrecord.py --csv_input=data/tv_vehicle_labels.csv --output_path=data/train.record
它是我们要运行源码,生成.record文件时,需要在cmd中键入的,而且要在该源码文件所在目录下键入,如我将其放在\tensorflow\models下,键入方式如图所示:
TensorFlow目标检测API训练自己的数据集——由.csv文件生成.record文件_第1张图片
然后回车即可运行。由它可知源码文件名为generate_tfrecord.py,源码中要转换的.CSV文件在当前的工作路径(F:\tensorflow\models\research\object_detection\)下的data文件夹下,需要带上文件名,即data/tv_vehicle_labels.csv。转换成功后的.record文件也存放到data文件夹下,取名train.record。需要根据自己的实际情况稍加修改。

然后是image_format = b'png'需要符合自己的文件格式。

最后,path = os.path.join(os.getcwd(), 'images'),与.CSV文件对应的图片存放在images文件夹下,而该文件夹在当前的工作目录下(F:\tensorflow\models\research\object_detection\)。由于我之前图片所在位置不正确,在cmd中键入命令运行程序时报错Windows fatal exception :access violation和内存不能为written,把我引到了内存问题的错误道路上。出现相同情况的伙伴可以尝试查看图片路径问题和文件夹中是否有图片。

你可能感兴趣的:(深度学习)