python开车之实现智能鉴黄的项目

2019独角兽企业重金招聘Python工程师标准>>> hot3.png

1.1 项目内容

本实验将使用 Python3 去识别图片是否为色情图片,我们会使用到 PIL 这个图像处理库,会编写算法来划分图像的皮肤区域。

1.2 项目知识点

  • Python 3 模块的安装
  • Python 3 基础知识
  • 肤色像素检测与皮肤区域划分算法
  • Pillow 模块的使用
  • argparse 模块的使用

1.3 效果展示

python开车之实现智能鉴黄的项目_第1张图片

 

python开车之实现智能鉴黄的项目_第2张图片

 

1.4 程序环境

  • python3.5
  • Pillow5.1

 

2.1安装相关包

PIL 2009年之后就没有更新了,也不支持 Python3 ,于是有了 Alex Clark 领导的公益项目 Pillow,Pillow 是一个对 PIL 友好的分支,支持 Python3,所以我们这里安装的是 Pillow,其官方文档

安装前更新源

$ sudo apt-get update

然后安装 Pillow 依赖包

$ sudo apt-get install libtiff5-dev libjpeg8-dev zlib1g-dev \
    libfreetype6-dev liblcms2-dev libwebp-dev tcl8.6-dev tk8.6-dev python-tk

最后使用pip3 安装 Pillow:

$ sudo pip3 install Pillow

2.2程序原理

本程序根据颜色(肤色)找出图片中皮肤的区域,然后通过一些条件判断是否为色情图片。

程序的关键步骤如下:

  1. 遍历每个像素,检测像素颜色是否为肤色
  2. 将相邻的肤色像素归为一个皮肤区域,得到若干个皮肤区域
  3. 剔除像素数量极少的皮肤区域

我们定义色情图片的判定规则如下(满足任意一个判定为真):

  1. 皮肤区域的个数小于 3 个
  2. 皮肤区域的像素与图像所有像素的比值小于 15%
  3. 最大皮肤区域小于总皮肤面积的 45%
  4. 皮肤区域数量超过60个

这些规则你可以尝试更改,直到程序效果让你满意为止

关于像素肤色判定这方面,公式可以在网上找到很多,但世界上不可能有正确率 100% 的公式

你可以用自己找到的公式,在程序完成后慢慢调试

  • RGB 颜色模式
    第一种:r > 95 and g > 40 and g < 100 and b > 20 and max([r, g, b]) - min([r, g, b]) > 15 and abs(r - g) > 15 and r > g and r > b
    第二种:nr = r / (r + g + b), ng = g / (r + g + b), nb = b / (r +g + b)nr / ng > 1.185 and r * b / (r + g + b) ** 2 > 0.107 and r * g / (r + g + b) ** 2 > 0.112
  • HSV 颜色模式
    h > 0 and h < 35 and s > 0.23 and s < 0.68
  • YCbCr 颜色模式
    97.5 <= cb <= 142.5 and 134 <= cr <= 176

一幅图像有零个到多个的皮肤区域,程序按发现顺序给它们编号,第一个发现的区域编号为 0,第 n 个发现的区域编号为 n-1

我们用一种类型来表示像素,我们给这个类型取名为 Skin,包含了像素的一些信息:唯一的 编号(id),是/否肤色(skin),皮肤区域号(region),横坐标(x),纵坐标(y

遍历所有像素时,我们为每个像素创建一个与之对应的 Skin 对象,并设置对象的所有属性

其中 region 属性即为像素所在的皮肤区域编号,创建对象时初始化为无意义的 None

关于每个像素的 id 值,左上角为原点,像素的 id 值按像素坐标排布,那么看起来如下图

python开车之实现智能鉴黄的项目_第3张图片

 

其实 id 的顺序也即遍历的顺序

遍历所有像素时,创建 Skin 对象后,如果当前像素为肤色,且相邻的像素有肤色的,那么我们把这些肤色像素归到一个皮肤区域

相邻像素的定义:通常都能想到是当前像素周围的 8** 个像素,然而实际上只需要定义 **4 个就可以了,位置分别在当前像素的左方,左上方,正上方,右上方;因为另外四个像素都在当前像素后面,我们还未给这4个像素创建对应的 Skin 对象

 

python开车之实现智能鉴黄的项目_第4张图片

接下来实现细节部分

2.3实现脚本代码:

# coding: utf-8
import sys
import os
import _io
from collections import namedtuple
from PIL import Image

class Nude(object):

    Skin = namedtuple("Skin", "id skin region x y")

    def __init__(self, path_or_image):
        # 若 path_or_image 为 Image.Image 类型的实例,直接赋值
        if isinstance(path_or_image, Image.Image):
            self.image = path_or_image
        # 若 path_or_image 为 str 类型的实例,打开图片
        elif isinstance(path_or_image, str):
            self.image = Image.open(path_or_image)

        # 获得图片所有颜色通道
        bands = self.image.getbands()
        # 判断是否为单通道图片(也即灰度图),是则将灰度图转换为 RGB 图
        if len(bands) == 1:
            # 新建相同大小的 RGB 图像
            new_img = Image.new("RGB", self.image.size)
            # 拷贝灰度图 self.image 到 RGB图 new_img.paste (PIL 自动进行颜色通道转换)
            new_img.paste(self.image)
            f = self.image.filename
            # 替换 self.image
            self.image = new_img
            self.image.filename = f

        # 存储对应图像所有像素的全部 Skin 对象
        self.skin_map = []
        # 检测到的皮肤区域,元素的索引即为皮肤区域号,元素都是包含一些 Skin 对象的列表
        self.detected_regions = []
        # 元素都是包含一些 int 对象(区域号)的列表
        # 这些元素中的区域号代表的区域都是待合并的区域
        self.merge_regions = []
        # 整合后的皮肤区域,元素的索引即为皮肤区域号,元素都是包含一些 Skin 对象的列表
        self.skin_regions = []
        # 最近合并的两个皮肤区域的区域号,初始化为 -1
        self.last_from, self.last_to = -1, -1
        # 色情图像判断结果
        self.result = None
        # 处理得到的信息
        self.message = None
        # 图像宽高
        self.width, self.height = self.image.size
        # 图像总像素
        self.total_pixels = self.width * self.height

    def resize(self, maxwidth=1000, maxheight=1000):
        """
        基于最大宽高按比例重设图片大小,
        注意:这可能影响检测算法的结果

        如果没有变化返回 0
        原宽度大于 maxwidth 返回 1
        原高度大于 maxheight 返回 2
        原宽高大于 maxwidth, maxheight 返回 3

        maxwidth - 图片最大宽度
        maxheight - 图片最大高度
        传递参数时都可以设置为 False 来忽略
        """
        # 存储返回值
        ret = 0
        if maxwidth:
            if self.width > maxwidth:
                wpercent = (maxwidth / self.width)
                hsize = int((self.height * wpercent))
                fname = self.image.filename
                # Image.LANCZOS 是重采样滤波器,用于抗锯齿
                self.image = self.image.resize((maxwidth, hsize), Image.LANCZOS)
                self.image.filename = fname
                self.width, self.height = self.image.size
                self.total_pixels = self.width * self.height
                ret += 1
        if maxheight:
            if self.height > maxheight:
                hpercent = (maxheight / float(self.height))
                wsize = int((float(self.width) * float(hpercent)))
                fname = self.image.filename
                self.image = self.image.resize((wsize, maxheight), Image.LANCZOS)
                self.image.filename = fname
                self.width, self.height = self.image.size
                self.total_pixels = self.width * self.height
                ret += 2
        return ret

    # 分析函数
    def parse(self):
        # 如果已有结果,返回本对象
        if self.result is not None:
            return self
        # 获得图片所有像素数据
        pixels = self.image.load()
        # 遍历每个像素
        for y in range(self.height):
            for x in range(self.width):
                # 得到像素的 RGB 三个通道的值
                # [x, y] 是 [(x,y)] 的简便写法
                r = pixels[x, y][0]   # red
                g = pixels[x, y][1]   # green
                b = pixels[x, y][2]   # blue
                # 判断当前像素是否为肤色像素
                isSkin = True if self._classify_skin(r, g, b) else False
                # 给每个像素分配唯一 id 值(1, 2, 3...height*width)
                # 注意 x, y 的值从零开始
                _id = x + y * self.width + 1
                # 为每个像素创建一个对应的 Skin 对象,并添加到 self.skin_map 中
                self.skin_map.append(self.Skin(_id, isSkin, None, x, y))
                # 若当前像素不为肤色像素,跳过此次循环
                if not isSkin:
                    continue

                # 设左上角为原点,相邻像素为符号 *,当前像素为符号 ^,那么相互位置关系通常如下图
                # ***
                # *^

                # 存有相邻像素索引的列表,存放顺序为由大到小,顺序改变有影响
                # 注意 _id 是从 1 开始的,对应的索引则是 _id-1
                check_indexes = [_id - 2, # 当前像素左方的像素
                                 _id - self.width - 2,  # 当前像素左上方的像素
                                 _id - self.width - 1,  # 当前像素的上方的像素
                                 _id - self.width]  # 当前像素右上方的像素
                # 用来记录相邻像素中肤色像素所在的区域号,初始化为 -1
                region = -1
                # 遍历每一个相邻像素的索引
                for index in check_indexes:
                    # 尝试索引相邻像素的 Skin 对象,没有则跳出循环
                    try:
                        self.skin_map[index]
                    except IndexError:
                        break
                    # 相邻像素若为肤色像素:
                    if self.skin_map[index].skin:
                        # 若相邻像素与当前像素的 region 均为有效值,且二者不同,且尚未添加相同的合并任务
                        if (self.skin_map[index].region != None and
                                region != None and region != -1 and
                                self.skin_map[index].region != region and
                                self.last_from != region and
                                self.last_to != self.skin_map[index].region) :
                            # 那么这添加这两个区域的合并任务
                            self._add_merge(region, self.skin_map[index].region)
                        # 记录此相邻像素所在的区域号
                        region = self.skin_map[index].region
                # 遍历完所有相邻像素后,若 region 仍等于 -1,说明所有相邻像素都不是肤色像素
                if region == -1:
                    # 更改属性为新的区域号,注意元祖是不可变类型,不能直接更改属性
                    _skin = self.skin_map[_id - 1]._replace(region=len(self.detected_regions))
                    self.skin_map[_id - 1] = _skin
                    # 将此肤色像素所在区域创建为新区域
                    self.detected_regions.append([self.skin_map[_id - 1]])
                # region 不等于 -1 的同时不等于 None,说明有区域号为有效值的相邻肤色像素
                elif region != None:
                    # 将此像素的区域号更改为与相邻像素相同
                    _skin = self.skin_map[_id - 1]._replace(region=region)
                    self.skin_map[_id - 1] = _skin
                    # 向这个区域的像素列表中添加此像素
                    self.detected_regions[region].append(self.skin_map[_id - 1])
        # 完成所有区域合并任务,合并整理后的区域存储到 self.skin_regions
        self._merge(self.detected_regions, self.merge_regions)
        # 分析皮肤区域,得到判定结果
        self._analyse_regions()
        return self


    # self.merge_regions 的元素都是包含一些 int 对象(区域号)的列表
    # self.merge_regions 的元素中的区域号代表的区域都是待合并的区域
    # 这个方法便是将两个待合并的区域号添加到 self.merge_regions 中
    def _add_merge(self, _from, _to):
        # 两个区域号赋值给类属性
        self.last_from = _from
        self.last_to = _to

        # 记录 self.merge_regions 的某个索引值,初始化为 -1
        from_index = -1
        # 记录 self.merge_regions 的某个索引值,初始化为 -1
        to_index = -1


        # 遍历每个 self.merge_regions 的元素
        for index, region in enumerate(self.merge_regions):
            # 遍历元素中的每个区域号
            for r_index in region:
                if r_index == _from:
                    from_index = index
                if r_index == _to:
                    to_index = index

        # 若两个区域号都存在于 self.merge_regions 中
        if from_index != -1 and to_index != -1:
            # 如果这两个区域号分别存在于两个列表中
            # 那么合并这两个列表
            if from_index != to_index:
                self.merge_regions[from_index].extend(self.merge_regions[to_index])
                del(self.merge_regions[to_index])
            return

        # 若两个区域号都不存在于 self.merge_regions 中
        if from_index == -1 and to_index == -1:
            # 创建新的区域号列表
            self.merge_regions.append([_from, _to])
            return
        # 若两个区域号中有一个存在于 self.merge_regions 中
        if from_index != -1 and to_index == -1:
            # 将不存在于 self.merge_regions 中的那个区域号
            # 添加到另一个区域号所在的列表
            self.merge_regions[from_index].append(_to)
            return
        # 若两个待合并的区域号中有一个存在于 self.merge_regions 中
        if from_index == -1 and to_index != -1:
            # 将不存在于 self.merge_regions 中的那个区域号
            # 添加到另一个区域号所在的列表
            self.merge_regions[to_index].append(_from)
            return

    # 合并该合并的皮肤区域
    def _merge(self, detected_regions, merge_regions):
        # 新建列表 new_detected_regions
        # 其元素将是包含一些代表像素的 Skin 对象的列表
        # new_detected_regions 的元素即代表皮肤区域,元素索引为区域号
        new_detected_regions = []

        # 将 merge_regions 中的元素中的区域号代表的所有区域合并
        for index, region in enumerate(merge_regions):
            try:
                new_detected_regions[index]
            except IndexError:
                new_detected_regions.append([])
            for r_index in region:
                new_detected_regions[index].extend(detected_regions[r_index])
                detected_regions[r_index] = []

        # 添加剩下的其余皮肤区域到 new_detected_regions
        for region in detected_regions:
            if len(region) > 0:
                new_detected_regions.append(region)

        # 清理 new_detected_regions
        self._clear_regions(new_detected_regions)

    # 皮肤区域清理函数
    # 只保存像素数大于指定数量的皮肤区域
    def _clear_regions(self, detected_regions):
        for region in detected_regions:
            if len(region) > 30:
                self.skin_regions.append(region)

    # 分析区域
    def _analyse_regions(self):
        # 如果皮肤区域小于 3 个,不是色情
        if len(self.skin_regions) < 3:
            self.message = "老铁,这应该不是色情图片,毕竟检测到疑似皮肤区域少于3 ({_skin_regions_size})".format(
                _skin_regions_size=len(self.skin_regions))
            self.result = False
            return self.result

        # 为皮肤区域排序
        self.skin_regions = sorted(self.skin_regions, key=lambda s: len(s),
                                   reverse=True)

        # 计算皮肤总像素数
        total_skin = float(sum([len(skin_region) for skin_region in self.skin_regions]))

        # 如果皮肤区域与整个图像的比值小于 15%,那么不是色情图片
        if total_skin / self.total_pixels * 100 < 15:
            self.message = "老铁,皮肤区域与整个图像的比值小于 15%,貌似这不是一张色情图片 ({:.2f})".format(total_skin / self.total_pixels * 100)
            self.result = False
            return self.result

        # 如果最大皮肤区域小于总皮肤面积的 45%,不是色情图片
        if len(self.skin_regions[0]) / total_skin * 100 < 45:
            self.message = "这不是色情图片,最大皮肤区域小于总皮肤面积的 45% ({:.2f})".format(len(self.skin_regions[0]) / total_skin * 100)
            self.result = False
            return self.result

        # 皮肤区域数量超过 60个,不是色情图片
        if len(self.skin_regions) > 60:
            self.message = "皮肤区域数量超过 60个,不是色情图片 ({})".format(len(self.skin_regions))
            self.result = False
            return self.result

        # 其它情况为色情图片
        self.message = "老铁,这是一张色情图片!!"
        self.result = True
        return self.result

    # 基于像素的肤色检测技术
    def _classify_skin(self, r, g, b):
        # 根据RGB值判定
        rgb_classifier = r > 95 and \
            g > 40 and g < 100 and \
            b > 20 and \
            max([r, g, b]) - min([r, g, b]) > 15 and \
            abs(r - g) > 15 and \
            r > g and \
            r > b
        # 根据处理后的 RGB 值判定
        nr, ng, nb = self._to_normalized(r, g, b)
        norm_rgb_classifier = nr / ng > 1.185 and \
            float(r * b) / ((r + g + b) ** 2) > 0.107 and \
            float(r * g) / ((r + g + b) ** 2) > 0.112

        # HSV 颜色模式下的判定
        h, s, v = self._to_hsv(r, g, b)
        hsv_classifier = h > 0 and \
            h < 35 and \
            s > 0.23 and \
            s < 0.68

        # YCbCr 颜色模式下的判定
        y, cb, cr = self._to_ycbcr(r, g,  b)
        ycbcr_classifier = 97.5 <= cb <= 142.5 and 134 <= cr <= 176

        # 效果不是很好,还需改公式
        # return rgb_classifier or norm_rgb_classifier or hsv_classifier or ycbcr_classifier
        return ycbcr_classifier

    def _to_normalized(self, r, g, b):
        if r == 0:
            r = 0.0001
        if g == 0:
            g = 0.0001
        if b == 0:
            b = 0.0001
        _sum = float(r + g + b)
        return [r / _sum, g / _sum, b / _sum]

    def _to_ycbcr(self, r, g, b):
        # 公式来源:
        # http://stackoverflow.com/questions/19459831/rgb-to-ycbcr-conversion-problems
        y = .299*r + .587*g + .114*b
        cb = 128 - 0.168736*r - 0.331364*g + 0.5*b
        cr = 128 + 0.5*r - 0.418688*g - 0.081312*b
        return y, cb, cr

    def _to_hsv(self, r, g, b):
        h = 0
        _sum = float(r + g + b)
        _max = float(max([r, g, b]))
        _min = float(min([r, g, b]))
        diff = float(_max - _min)
        if _sum == 0:
            _sum = 0.0001

        if _max == r:
            if diff == 0:
                h = sys.maxsize
            else:
                h = (g - b) / diff
        elif _max == g:
            h = 2 + ((g - r) / diff)
        else:
            h = 4 + ((r - g) / diff)

        h *= 60
        if h < 0:
            h += 360

        return [h, 1.0 - (3.0 * (_min / _sum)), (1.0 / 3.0) * _max]

    def inspect(self):
        _image = '{} {} {}×{}'.format(self.image.filename, self.image.format, self.width, self.height)
        return "{_image}: result={_result} message='{_message}'".format(_image=_image, _result=self.result, _message=self.message)

    # 将在源文件目录生成图片文件,将皮肤区域可视化
    def showSkinRegions(self):
        # 未得出结果时方法返回
        if self.result is None:
            return
        # 皮肤像素的 ID 的集合
        skinIdSet = set()
        # 将原图做一份拷贝
        simage = self.image
        # 加载数据
        simageData = simage.load()

        # 将皮肤像素的 id 存入 skinIdSet
        for sr in self.skin_regions:
            for pixel in sr:
                skinIdSet.add(pixel.id)
        # 将图像中的皮肤像素设为白色,其余设为黑色
        for pixel in self.skin_map:
            if pixel.id not in skinIdSet:
                simageData[pixel.x, pixel.y] = 0, 0, 0
            else:
                simageData[pixel.x, pixel.y] = 255, 255, 255
        # 源文件绝对路径
        filePath = os.path.abspath(self.image.filename)
        # 源文件所在目录
        fileDirectory = os.path.dirname(filePath) + '/'
        # 源文件的完整文件名
        fileFullName = os.path.basename(filePath)
        # 分离源文件的完整文件名得到文件名和扩展名
        fileName, fileExtName = os.path.splitext(fileFullName)
        # 保存图片
        simage.save('{}{}_{}{}'.format(fileDirectory, fileName,'Nude' if self.result else 'Normal', fileExtName))

if __name__ == "__main__":
    import argparse

    parser = argparse.ArgumentParser(description='Detect nudity in images.')
    parser.add_argument('files', metavar='image', nargs='+',
                        help='Images you wish to test')
    parser.add_argument('-r', '--resize', action='store_true',
                        help='Reduce image size to increase speed of scanning')
    parser.add_argument('-v', '--visualization', action='store_true',
                        help='Generating areas of skin image')

    args = parser.parse_args()

    for fname in args.files:
        if os.path.isfile(fname):
            n = Nude(fname)
            if args.resize:
                n.resize(maxheight=800, maxwidth=600)
            n.parse()
            if args.visualization:
                n.showSkinRegions()
            print n.result, n.inspect()
        else:
            print fname, "不是一个文件"

转载于:https://my.oschina.net/babyanzichen/blog/1922905

你可能感兴趣的:(python开车之实现智能鉴黄的项目)