OpenCV实现了两种Hough Line变换:
#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include
using namespace cv;
using namespace std;
static void help()
{
cout << "\nThis program demonstrates line finding with the Hough transform.\n"
"Usage:\n"
"./houghlines , Default is ../data/pic1.png\n" << endl;
}
int main(int argc, char** argv)
{
cv::CommandLineParser parser(argc, argv,
"{help h||}{@image|../data/pic1.png|}"
);
if (parser.has("help"))
{
help();
return 0;
}
string filename = parser.get("@image");
if (filename.empty())
{
help();
cout << "no image_name provided" << endl;
return -1;
}
Mat src = imread(filename, 0);
if(src.empty())
{
help();
cout << "can not open " << filename << endl;
return -1;
}
Mat dst, cdst;
Canny(src, dst, 50, 200, 3);
cvtColor(dst, cdst, COLOR_GRAY2BGR);
#if 0
vector lines;
HoughLines(dst, lines, 1, CV_PI/180, 100, 0, 0 );
for( size_t i = 0; i < lines.size(); i++ )
{
float rho = lines[i][0], theta = lines[i][1];
Point pt1, pt2;
double a = cos(theta), b = sin(theta);
double x0 = a*rho, y0 = b*rho;
pt1.x = cvRound(x0 + 1000*(-b));
pt1.y = cvRound(y0 + 1000*(a));
pt2.x = cvRound(x0 - 1000*(-b));
pt2.y = cvRound(y0 - 1000*(a));
line( cdst, pt1, pt2, Scalar(0,0,255), 3, CV_AA);
}
#else
vector lines;
HoughLinesP(dst, lines, 1, CV_PI/180, 50, 50, 10 );
for( size_t i = 0; i < lines.size(); i++ )
{
Vec4i l = lines[i];
line( cdst, Point(l[0], l[1]), Point(l[2], l[3]), Scalar(0,0,255), 3, LINE_AA);
}
#endif
imshow("source", src);
imshow("detected lines", cdst);
waitKey();
return 0;
}
(1)dst:边缘检测器的输出。 它应该是灰度图像(虽然实际上它是二进制图像)
(2)lines:一个向量,用于存储检测到的行的参数(r,θ)
(3)rho:参数r的分辨率,以像素为单位。 我们使用1个像素。
(4)theta:以弧度表示的参数θ的分辨率。 我们使用1度(CV_PI / 180)
(5)threshold:“*检测*”一条线的最小交叉点数
(6)srn和stn:默认参数为零。
使用输入图像,例如:
我们使用概率Hough线变换得到以下结果: