5773. 【NOIP2008模拟】简单数学题

Description

话说, 小X是个数学大佬,他喜欢做数学题。有一天,小X想考一考小Y。他问了小Y一道数学题。题目如下:
对于一个正整数N,存在一个正整数T 0<T<N ( 0 < T < N ) ,使得这里写图片描述的值是正整数。
小X给出N,让小Y给出所有可能的T。如果小Y不回答这个神奇的大佬的简单数学题,他学神的形象就会支离破碎。所以小Y求你帮他回答小X的问题。

Input

一个整数N。

Output

第一个数M,表示对于正整数N,存在M个不同的正整数T,使得这里写图片描述是整数。
后面是M个数,每一个数代表可能的正整数T(按从小到大的顺序排列)。

Sample Input

Sample Input1:
1

Sample Input2:
3

Sample Input3
180

Sample Output

Sample Output
0

Sample Output
1 2

Sample Output
5 120 144 160 168 176

Data Constraint

对于5%的数据,N=1.
对于20%的数据,N<=5.
对于40%的数据,N<=1000000
对于另外20%的数据,答案只有1个,且N为质数,保证对于前60%的数据,当N为质数的时候,答案都一定只有一个,对于这20%的数据,满足2

Solution

推导过程:
这里写图片描述 —>
这里写图片描述 —>
这里写图片描述 —>
这里写图片描述 —>
这里写图片描述
也就是说,我们要使这里写图片描述的K是一个正整数,那么我们只需要让2K-1是N的(奇数)因数(当然1是不能算的)。我们就可以用的时间算出所有的因数,然后排一个序(因为的时间求因子是乱的),输出这里写图片描述就可以了。(其中为因子)

注意细节:
·我们不能单纯输出这里写图片描述而是输出这里写图片描述因为int64会爆炸。
·排序要花费很多时间,时间复杂度这里写图片描述其中num[-1]是因子个数。
·数组因子要开1000000。
·判因数的时候要判断的情况,但是不能被包含。这是因为有奇数判断的操作。

Code1

#include 
#include
#include
#include
#include
#define N 20000000
#define ll long long
using namespace std;
ll n,ans[N];
void qs(int l,int r){
    int i=l,j=r;ll m=ans[l];
    while(i<=j){
        while(ans[i]while(ans[j]>m) j--;
        if(i<=j){
            ll t=ans[i];
            ans[i]=ans[j];
            ans[j]=t;
            i++,j--;
        }
    }
    if(lif(iint main(){
    freopen("math.in","r",stdin);
    freopen("math.out","w",stdout);
    scanf("%lld",&n);
    for(int i=1;i<=trunc(sqrt(n));i++){
        if((n%i)==0){
            if(i!=1&&i%2==1) ans[++ans[0]]=i;
            if(i*i!=n&&(n/i)%2==1) ans[++ans[0]]=n/i;
        }
    }
    qs(1,ans[0]);
    printf("%lld ",ans[0]);
    for(int i=1;i<=ans[0];i++) printf("%lld ",n/ans[i]*(ans[i]-1));
    return 0;
}

Code2

#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
long long ys1[2500000],ys2[2500000];
int gs1=0,gs2=0;
int main()
{
    freopen("math.in","r",stdin);
    freopen("math.out","w",stdout);
    long long n,nn;scanf("%lld",&n);
    nn=n;
    while(n%2==0)n/=2;
    long long s=sqrt(n);
    for(long long i=1;i<=s;i+=2)
    {
        if(n%i==0)
        {
            if(i!=1)ys1[++gs1]=i;
            if(n/i!=1)if(n/i!=i)ys2[++gs2]=n/i;
        }
    }
    printf("%d ",gs1+gs2);
    long long k;
    for(int i=1;i<=gs1;i++)
    {
        k=ys1[i]/2;
        printf("%lld ",nn/(2*k+1)*2*k);
    }
    for(int i=gs2;i>=1;i--)
    {
        k=ys2[i]/2;
        printf("%lld ",nn/(2*k+1)*2*k);
    }
    printf("\n");
    fclose(stdin);fclose(stdout);
    return 0;
}

作者:zsjzliziyang
QQ:1634151125
转载及修改请注明
本文地址:https://blog.csdn.net/zsjzliziyang/article/details/81556641

你可能感兴趣的:(题目,数学,数学)