解 双纽线的极坐标方程为 r 2 = cos 2 θ r^2=\cos2\theta r2=cos2θ,根据对称性,所求面积为 S = 4 ⋅ 1 2 ∫ 0 π 4 r 2 d θ = 2 ∫ 0 π 4 cos 2 θ d θ S=4\cdot\cfrac{1}{2}\displaystyle\int^{\frac{\pi}{4}}_0r^2\mathrm{d}\theta=2\displaystyle\int^{\frac{\pi}{4}}_0\cos2\theta\mathrm{d}\theta S=4⋅21∫04πr2dθ=2∫04πcos2θdθ,故应选 ( A ) (A) (A)。(这道题主要利用了极坐标求面积的公式求解)
解 对方程 arctan x y = ln x 2 + y 2 − 1 2 ln 2 + π 4 \arctan\cfrac{x}{y}=\ln\sqrt{x^2+y^2}-\cfrac{1}{2}\ln2+\cfrac{\pi}{4} arctanyx=lnx2+y2−21ln2+4π两端关于 x x x求导,得 1 1 + ( x y ) 2 ⋅ y − x y ′ y 2 = 1 2 ⋅ 2 x + 2 y y ′ x 2 + y 2 \cfrac{1}{1+\left(\cfrac{x}{y}\right)^2}\cdot\cfrac{y-xy'}{y^2}=\cfrac{1}{2}\cdot\cfrac{2x+2yy'}{x^2+y^2} 1+(yx)21⋅y2y−xy′=21⋅x2+y22x+2yy′,即 ( x + y ) y ′ = − x + y (x+y)y'=-x+y (x+y)y′=−x+y。再关于 x x x求导,得 ( 1 + y ′ ) y ′ + ( x + y ) y ′ ′ = − 1 + y ′ (1+y')y'+(x+y)y''=-1+y' (1+y′)y′+(x+y)y′′=−1+y′。将代入 x = 1 , y = 1 x=1,y=1 x=1,y=1,得 y ′ ( 1 ) = 0 , y ′ ′ ( 1 ) = 1 2 y'(1)=0,y''(1)=\cfrac{1}{2} y′(1)=0,y′′(1)=21。所以,曲线 y = f ( x ) y=f(x) y=f(x)在点 ( 1 , 1 ) (1,1) (1,1)处的曲率为 k = ∣ y ′ ′ ∣ [ 1 + ( y ′ ) 2 ] 3 = 1 2 k=\cfrac{|y''|}{\sqrt{[1+(y')^2]^3}}=\cfrac{1}{2} k=[1+(y′)2]3∣y′′∣=21。
解 因为 y ′ = y − x x + y y'=\cfrac{y-x}{x+y} y′=x+yy−x在区间 [ 0 , 1 ] [0,1] [0,1]上连续,且 y ( 0 ) = 2 e − π 4 y(0)=\sqrt{2}e^{-\frac{\pi}{4}} y(0)=2e−4π,所以 ∫ 0 1 x − f ( x ) x + f ( x ) d x = − ∫ 0 1 f ′ ( x ) d x = f ( 0 ) − f ( 1 ) = 2 e − π 4 − 1 \displaystyle\int^1_0\cfrac{x-f(x)}{x+f(x)}\mathrm{d}x=-\displaystyle\int^1_0f'(x)\mathrm{d}x=f(0)-f(1)=\sqrt{2}e^{-\frac{\pi}{4}}-1 ∫01x+f(x)x−f(x)dx=−∫01f′(x)dx=f(0)−f(1)=2e−4π−1。(这道题主要利用了构造函数求解)
解
V = 2 ∫ 0 arcsin a π ( a − sin x ) 2 d x + ∫ arcsin a π − arcsin a π ( a − sin x ) 2 d x = ∫ 0 arcsin a π ( a − sin x ) 2 d x + ∫ 0 π − arcsin a π ( a − sin x ) 2 d x , \begin{aligned} V&=2\displaystyle\int^{\arcsin a}_0\pi(a-\sin x)^2\mathrm{d}x+\displaystyle\int^{\pi-\arcsin a}_{\arcsin a}\pi(a-\sin x)^2\mathrm{d}x\\ &=\displaystyle\int^{\arcsin a}_0\pi(a-\sin x)^2\mathrm{d}x+\displaystyle\int^{\pi-\arcsin a}_0\pi(a-\sin x)^2\mathrm{d}x, \end{aligned} V=2∫0arcsinaπ(a−sinx)2dx+∫arcsinaπ−arcsinaπ(a−sinx)2dx=∫0arcsinaπ(a−sinx)2dx+∫0π−arcsinaπ(a−sinx)2dx,
对于第二个积分,令 x = π − t x=\pi-t x=π−t,有 ∫ 0 π − arcsin a π ( a − sin x ) 2 d x = − ∫ π arcsin a π ( a − sin t ) 2 d t = ∫ arcsin a π π ( a − sin x ) 2 d x \displaystyle\int^{\pi-\arcsin a}_0\pi(a-\sin x)^2\mathrm{d}x=-\displaystyle\int^{\arcsin a}_\pi\pi(a-\sin t)^2\mathrm{d}t=\displaystyle\int^{\pi}_{\arcsin a}\pi(a-\sin x)^2\mathrm{d}x ∫0π−arcsinaπ(a−sinx)2dx=−∫πarcsinaπ(a−sint)2dt=∫arcsinaππ(a−sinx)2dx。于是 V = ∫ 0 π π ( a − sin x ) 2 d x = π 2 a 2 − 4 a π + 1 2 π 2 V=\displaystyle\int^\pi_0\pi(a-\sin x)^2\mathrm{d}x=\pi^2a^2-4a\pi+\cfrac{1}{2}\pi^2 V=∫0ππ(a−sinx)2dx=π2a2−4aπ+21π2,则有 V ′ ( a ) = 2 π 2 a − 4 π = 0 V'(a)=2\pi^2a-4\pi=0 V′(a)=2π2a−4π=0,解得 a = 2 π a=\cfrac{2}{\pi} a=π2是唯一驻点,且 V ′ ′ ( a ) = 2 π 2 > 0 V''(a)=2\pi^2>0 V′′(a)=2π2>0。故 V ( 2 π ) = 1 2 π 2 − 4 V\left(\cfrac{2}{\pi}\right)=\cfrac{1}{2}\pi^2-4 V(π2)=21π2−4是极小值。
又 V ( 0 ) = π ∫ 0 π sin 2 x d x = 1 2 π 2 , V ( 1 ) = π ∫ 0 π ( 1 − sin x ) 2 d x = 3 2 π 2 − 4 π V(0)=\pi\displaystyle\int^\pi_0\sin^2x\mathrm{d}x=\cfrac{1}{2}\pi^2,V(1)=\pi\displaystyle\int^\pi_0(1-\sin x)^2\mathrm{d}x=\cfrac{3}{2}\pi^2-4\pi V(0)=π∫0πsin2xdx=21π2,V(1)=π∫0π(1−sinx)2dx=23π2−4π。因此,当 a = 2 π a=\cfrac{2}{\pi} a=π2时,旋转体体积最小;当 a = 0 a=0 a=0时,旋转体体积最大。(这道题主要利用了积分区间变换求解)
解
y = 1 6 x 2 , y ′ = 1 3 x , 1 + ( y ′ ) 2 = 1 + 1 9 x 2 , s = ∫ 0 4 1 + 1 9 x 2 d x = x = 3 tan t 3 ∫ 0 arctan 4 3 1 + tan 2 t sec 2 t d t = 3 ∫ 0 arctan 4 3 sec 3 t d t = 3 ( sec x tan x ∣ 0 arctan 4 3 − ∫ 0 arctan 4 3 tan 2 x sec x d x ) = 3 ( sec x tan x ∣ 0 arctan 4 3 − ∫ 0 arctan 4 3 ( sec 2 x − 1 ) sec x d x ) = 3 ( sec x tan x ∣ 0 arctan 4 3 − ∫ 0 arctan 4 3 sec 3 x d x + ∫ 0 arctan 4 3 sec x d x ) = 3 2 ( sec x tan x ∣ 0 arctan 4 3 + ∫ 0 arctan 4 3 sec x d x ) = 3 2 ( sec x tan x + ln ∣ sec x + tan x ∣ ) ∣ 0 arctan 4 3 = 10 3 + 3 2 ln 3. y=\cfrac{1}{6}x^2,y'=\cfrac{1}{3}x,\sqrt{1+(y')^2}=\sqrt{1+\cfrac{1}{9}x^2},\\ \begin{aligned} s&=\displaystyle\int^4_0\sqrt{1+\cfrac{1}{9}x^2}\mathrm{d}x\xlongequal{x=3\tan t}3\displaystyle\int^{\arctan\frac{4}{3}}_0\sqrt{1+\tan^2t}\sec^2t\mathrm{d}t\\ &=3\displaystyle\int^{\arctan\frac{4}{3}}_0\sec^3t\mathrm{d}t=3\left(\sec x\tan x\biggm\vert^{\arctan\frac{4}{3}}_0-\displaystyle\int^{\arctan\frac{4}{3}}_0\tan^2x\sec x\mathrm{d}x\right)\\ &=3\left(\sec x\tan x\biggm\vert^{\arctan\frac{4}{3}}_0-\displaystyle\int^{\arctan\frac{4}{3}}_0(\sec^2x-1)\sec x\mathrm{d}x\right)\\ &=3\left(\sec x\tan x\biggm\vert^{\arctan\frac{4}{3}}_0-\displaystyle\int^{\arctan\frac{4}{3}}_0\sec^3x\mathrm{d}x+\displaystyle\int^{\arctan\frac{4}{3}}_0\sec x\mathrm{d}x\right)\\ &=\cfrac{3}{2}\left(\sec x\tan x\biggm\vert^{\arctan\frac{4}{3}}_0+\displaystyle\int^{\arctan\frac{4}{3}}_0\sec x\mathrm{d}x\right)\\ &=\cfrac{3}{2}\left(\sec x\tan x+\ln|\sec x+\tan x|\right)\biggm\vert^{\arctan\frac{4}{3}}_0=\cfrac{10}{3}+\cfrac{3}{2}\ln3. \end{aligned} y=61x2,y′=31x,1+(y′)2=1+91x2,s=∫041+91x2dxx=3tant3∫0arctan341+tan2tsec2tdt=3∫0arctan34sec3tdt=3(secxtanx∣∣∣∣0arctan34−∫0arctan34tan2xsecxdx)=3(secxtanx∣∣∣∣0arctan34−∫0arctan34(sec2x−1)secxdx)=3(secxtanx∣∣∣∣0arctan34−∫0arctan34sec3xdx+∫0arctan34secxdx)=23(secxtanx∣∣∣∣0arctan34+∫0arctan34secxdx)=23(secxtanx+ln∣secx+tanx∣)∣∣∣∣0arctan34=310+23ln3.
(这道题主要利用了分部积分法求解)
解 令 F ( x ) = ∫ 0 x f ( t ) d t F(x)=\displaystyle\int^x_0f(t)\mathrm{d}t F(x)=∫0xf(t)dt,则 F ( 0 ) = 0 , F ( 1 ) = ∫ 0 1 f ( t ) d t F(0)=0,F(1)=\displaystyle\int^1_0f(t)\mathrm{d}t F(0)=0,F(1)=∫01f(t)dt, F ( x ) F(x) F(x)在 [ 0 , 1 ] [0,1] [0,1]上可导,且 F ′ ( x ) = f ( x ) F'(x)=f(x) F′(x)=f(x)。对 F ( x ) F(x) F(x)在 [ 0 , 1 ] [0,1] [0,1]上利用拉格朗日中值定理,存在 ξ ∈ ( 0 , 1 ) \xi\in(0,1) ξ∈(0,1),使得 f ( ξ ) = F ′ ( ξ ) = F ( 1 ) − F ( 0 ) 1 − 0 = 1 f(\xi)=F'(\xi)=\cfrac{F(1)-F(0)}{1-0}=1 f(ξ)=F′(ξ)=1−0F(1)−F(0)=1。
解 作辅助函数 G ( x ) = x [ f ( x ) − 1 ] G(x)=x[f(x)-1] G(x)=x[f(x)−1],显然 G ( 0 ) = G ( ξ ) = 0 G(0)=G(\xi)=0 G(0)=G(ξ)=0, G ( x ) G(x) G(x)在 [ 0 , ξ ] ⊂ [ 0 , 1 ] [0,\xi]\subset[0,1] [0,ξ]⊂[0,1]上可导,且根据罗尔定理,存在 η ∈ ( 0 , ξ ) ⊂ ( 0 , 1 ) \eta\in(0,\xi)\subset(0,1) η∈(0,ξ)⊂(0,1),使得 G ′ ( η ) = 0 G'(\eta)=0 G′(η)=0,即 η f ′ ( η ) + f ( η ) = 1 \eta f'(\eta)+f(\eta)=1 ηf′(η)+f(η)=1。(这道题主要利用了构造函数求解)
解 由于等式左端第二个积分区间与其他积分区间不同,在第二个积分中,令 t = 1 x t=\cfrac{1}{x} t=x1, d x = − 1 t 2 d t \mathrm{d}x=-\cfrac{1}{t^2}\mathrm{d}t dx=−t21dt。当 x = 1 x=1 x=1时, t = 1 t=1 t=1;当 x = 1 e 2 x=\cfrac{1}{e^2} x=e21时, t = e 2 t=e^2 t=e2。因此,从而左端 = ∫ 1 e 2 ln x 1 + x d x + ∫ 1 e 2 ln x x ( 1 + x ) d x = ∫ 1 e 2 ln x x d x = =\displaystyle\int^{e^2}_1\cfrac{\ln x}{1+x}\mathrm{d}x+\displaystyle\int^{e^2}_1\cfrac{\ln x}{x(1+x)}\mathrm{d}x=\displaystyle\int^{e^2}_1\cfrac{\ln x}{x}\mathrm{d}x= =∫1e21+xlnxdx+∫1e2x(1+x)lnxdx=∫1e2xlnxdx=右端。(这道题主要利用了换元法求解)
解 原不等式等价于 ( n + 1 ) ∫ a b ( b − x ) n f ( x ) d x ⩽ ( b − a ) n ∫ a b f ( x ) d x ( n ∈ N ) (n+1)\displaystyle\int^b_a\left(b-x\right)^nf(x)\mathrm{d}x\leqslant(b-a)^n\displaystyle\int^b_af(x)\mathrm{d}x(n\in\bold{N}) (n+1)∫ab(b−x)nf(x)dx⩽(b−a)n∫abf(x)dx(n∈N),令 F ( x ) = ( b − x ) n ∫ x b f ( t ) d t − ( n + 1 ) ∫ x b ( b − t ) n f ( t ) d t F(x)=(b-x)^n\displaystyle\int^b_xf(t)\mathrm{d}t-(n+1)\displaystyle\int^b_x\left(b-t\right)^nf(t)\mathrm{d}t F(x)=(b−x)n∫xbf(t)dt−(n+1)∫xb(b−t)nf(t)dt,得
F ′ ( x ) = − n ( b − x ) n − 1 ∫ x b f ( t ) d t − ( b − x ) n f ( x ) + ( n + 1 ) ( b − x ) n f ( x ) = − n ( b − x ) n − 1 ∫ x b f ( t ) d t + n ( b − x ) n f ( x ) . \begin{aligned} F'(x)&=-n(b-x)^{n-1}\displaystyle\int^b_xf(t)\mathrm{d}t-(b-x)^nf(x)+(n+1)\left(b-x\right)^nf(x)\\ &=-n(b-x)^{n-1}\displaystyle\int^b_xf(t)\mathrm{d}t+n(b-x)^nf(x). \end{aligned} F′(x)=−n(b−x)n−1∫xbf(t)dt−(b−x)nf(x)+(n+1)(b−x)nf(x)=−n(b−x)n−1∫xbf(t)dt+n(b−x)nf(x).
又存在 ξ ∈ ( x , b ) \xi\in(x,b) ξ∈(x,b),使 ∫ x b f ( t ) d t = f ( ξ ) ( b − x ) \displaystyle\int^b_xf(t)\mathrm{d}t=f(\xi)(b-x) ∫xbf(t)dt=f(ξ)(b−x),故
F ′ ( x ) = − n ( b − x ) n − 1 f ( ξ ) + n ( b − x ) n f ( x ) = n ( b − n ) n [ f ( x ) − f ( ξ ) ] ⩽ 0. \begin{aligned} F'(x)&=-n(b-x)^{n-1}f(\xi)+n(b-x)^nf(x)\\ &=n(b-n)^n[f(x)-f(\xi)]\leqslant0. \end{aligned} F′(x)=−n(b−x)n−1f(ξ)+n(b−x)nf(x)=n(b−n)n[f(x)−f(ξ)]⩽0.
所以 f ( x ) f(x) f(x)在 [ a , b ] [a,b] [a,b]上单调递减,于是
F ( a ) = ( b − a ) n ∫ a b f ( t ) d t − ( n + 1 ) ∫ a b ( b − t ) n f ( t ) d t = ( b − a ) n ∫ a b f ( x ) d x − ( n + 1 ) ∫ a b ( b − x ) n f ( x ) d x ⩾ F ( b ) = 0 \begin{aligned} F(a)&=(b-a)^n\displaystyle\int^b_af(t)\mathrm{d}t-(n+1)\displaystyle\int^b_a\left(b-t\right)^nf(t)\mathrm{d}t\\ &=(b-a)^n\displaystyle\int^b_af(x)\mathrm{d}x-(n+1)\displaystyle\int^b_a\left(b-x\right)^nf(x)\mathrm{d}x\\ &\geqslant F(b)=0 \end{aligned} F(a)=(b−a)n∫abf(t)dt−(n+1)∫ab(b−t)nf(t)dt=(b−a)n∫abf(x)dx−(n+1)∫ab(b−x)nf(x)dx⩾F(b)=0
(这道题主要利用了构造函数求解)
解 记 A = 1 b − a ∫ a b f ( x ) d x A=\cfrac{1}{b-a}\displaystyle\int^b_af(x)\mathrm{d}x A=b−a1∫abf(x)dx,则原不等式可写成 ln A ⩾ 1 b − a ∫ a b ln f ( x ) d x \ln A\geqslant\cfrac{1}{b-a}\displaystyle\int^b_a\ln f(x)\mathrm{d}x lnA⩾b−a1∫ablnf(x)dx,即证 ∫ a b [ ln f ( x ) − ln A ] d x ⩽ 0 \displaystyle\int^b_a[\ln f(x)-\ln A]\mathrm{d}x\leqslant0 ∫ab[lnf(x)−lnA]dx⩽0。
又由于 ln f ( x ) − ln A = ln { 1 + [ f ( x ) A − 1 ] } ⩽ f ( x ) A − 1 \ln f(x)-\ln A=\ln\left\{1+\left[\cfrac{f(x)}{A}-1\right]\right\}\leqslant\cfrac{f(x)}{A}-1 lnf(x)−lnA=ln{ 1+[Af(x)−1]}⩽Af(x)−1,故 ∫ a b [ ln f ( x ) − ln A ] d x ⩽ ∫ a b [ f ( x ) A − 1 ] d x = 1 A ∫ a b f ( x ) d x − ( b − a ) = 0 \displaystyle\int^b_a[\ln f(x)-\ln A]\mathrm{d}x\leqslant\displaystyle\int^b_a\left[\cfrac{f(x)}{A}-1\right]\mathrm{d}x=\cfrac{1}{A}\displaystyle\int^b_af(x)\mathrm{d}x-(b-a)=0 ∫ab[lnf(x)−lnA]dx⩽∫ab[Af(x)−1]dx=A1∫abf(x)dx−(b−a)=0。(这道题主要利用了放缩法求解)
解 f ( x ) = f ( 1 2 ) + f ′ ( 1 2 ) ( x − 1 2 ) + f ′ ′ ( ξ ) 2 ! ( x − 1 2 ) 2 f(x)=f\left(\cfrac{1}{2}\right)+f'\left(\cfrac{1}{2}\right)\left(x-\cfrac{1}{2}\right)+\cfrac{f''(\xi)}{2!}\left(x-\cfrac{1}{2}\right)^2 f(x)=f(21)+f′(21)(x−21)+2!f′′(ξ)(x−21)2,其中 ξ \xi ξ介于 x , 1 2 x,\cfrac{1}{2} x,21之间。又由 f ′ ′ ( x ) > 0 f''(x)>0 f′′(x)>0,则 f ′ ′ ( ξ ) > 0 f''(\xi)>0 f′′(ξ)>0,于是 f ( x ) ⩾ f ( 1 2 ) + f ′ ( 1 2 ) ( x − 1 2 ) f(x)\geqslant f\left(\cfrac{1}{2}\right)+f'\left(\cfrac{1}{2}\right)\left(x-\cfrac{1}{2}\right) f(x)⩾f(21)+f′(21)(x−21)。
两边在区间 [ 0 , 1 ] [0,1] [0,1]上对 x x x积分得
∫ 0 1 f ( x ) d x ⩾ ∫ 0 1 [ f ( 1 2 ) + f ′ ( 1 2 ) ( x − 1 2 ) ] d x = f ( 1 2 ) + f ′ ( 1 2 ) ∫ 0 1 ( x − 1 2 ) d x = f ( 1 2 ) = 1. \begin{aligned} \displaystyle\int^1_0f(x)\mathrm{d}x&\geqslant\displaystyle\int^1_0\left[f\left(\cfrac{1}{2}\right)+f'\left(\cfrac{1}{2}\right)\left(x-\cfrac{1}{2}\right)\right]\mathrm{d}x\\ &=f\left(\cfrac{1}{2}\right)+f'\left(\cfrac{1}{2}\right)\displaystyle\int^1_0\left(x-\cfrac{1}{2}\right)\mathrm{d}x=f\left(\cfrac{1}{2}\right)=1. \end{aligned} ∫01f(x)dx⩾∫01[f(21)+f′(21)(x−21)]dx=f(21)+f′(21)∫01(x−21)dx=f(21)=1.
(这道题主要利用了泰勒展开式求解)
如果觉得文章不错就点个赞吧。另外,如果有不同的观点,欢迎留言或私信。
欢迎非商业转载,转载请注明出处。