Hadoop MapReduce之作业提交(客户端)

Hadoop MapReduce之jar文件上传
   在提交作业时,我们经常会执行下面类似命令:hadoop jar wordcount.jar test.WordCount,然后等待作业完成,查看结果。在作业执行流程中客户端会把jar文件上传至HDFS内,然后由JT初始化作业,并发放给TT执行具体的任务,这里我们主要看客户端的操作,了解这些我们可以自定义更为方便的作业提交方式。hadoop是一个shell脚本,根据不同参数执行不同的分支,在作业提交时,最终会调用org.apache.hadoop.util.RunJar这个类的main函数。
RunJar的main函数可以接受参数,最简单的情况下,我们执行jar文件和main函数类就可以了。在一般流程中,执行该类之前,hadoop脚本会做初始化工作,如设置相关目录、设置classpath、初始化系统变量等操作。
 
Hadoop MapReduce之作业提交(客户端)_第1张图片

在main函数中会判断参数传入是否正确,解压jar文件,进入作业的main函数
public static void main(String[] args) throws Throwable {
    String usage = "RunJar jarFile [mainClass] args...";
    //参数个数判断
    if (args.length < 1) {
      System.err.println(usage);
      System.exit(-1);
    }
    int firstArg = 0;
    String fileName = args[firstArg++];
    File file = new File(fileName);
    String mainClassName = null;


    JarFile jarFile;
		try {
  		//建立jar文件
      jarFile = new JarFile(fileName);
    } catch(IOException io) {
      throw new IOException("Error opening job jar: " + fileName)
        .initCause(io);
    }
    //获取jar文件清单
    Manifest manifest = jarFile.getManifest();
    if (manifest != null) {
      mainClassName = manifest.getMainAttributes().getValue("Main-Class");
    }
    jarFile.close();


    if (mainClassName == null) {
      if (args.length < 2) {
        System.err.println(usage);
        System.exit(-1);
      }
      mainClassName = args[firstArg++];
    }
    mainClassName = mainClassName.replaceAll("/", ".");
    //获取临时目录,用于解压
    File tmpDir = new File(new Configuration().get("hadoop.tmp.dir"));
    //创建解压目录
    tmpDir.mkdirs();
    if (!tmpDir.isDirectory()) { 
      System.err.println("Mkdirs failed to create " + tmpDir);
      System.exit(-1);
    }
    //在临时目录中创建工作目录
    final File workDir = File.createTempFile("hadoop-unjar", "", tmpDir);
    workDir.delete();
    workDir.mkdirs();
    if (!workDir.isDirectory()) {
      System.err.println("Mkdirs failed to create " + workDir);
      System.exit(-1);
    }
    //设置回调函数,待完成时删除工作目录
    Runtime.getRuntime().addShutdownHook(new Thread() {
        public void run() {
          try {
            FileUtil.fullyDelete(workDir);
          } catch (IOException e) {
          }
        }
      });
    //解压jar文件
    unJar(file, workDir);
    //设置classpath,注意classes和lib都会加入其中
    ArrayList classPath = new ArrayList();
    classPath.add(new File(workDir+"/").toURL());
    classPath.add(file.toURL());
    classPath.add(new File(workDir, "classes/").toURL());
    File[] libs = new File(workDir, "lib").listFiles();
    if (libs != null) {
      for (int i = 0; i < libs.length; i++) {
        classPath.add(libs[i].toURL());
      }
    }
    
    ClassLoader loader =
      new URLClassLoader(classPath.toArray(new URL[0]));
    //获得main函数,通过动态代理调用
    Thread.currentThread().setContextClassLoader(loader);
    Class mainClass = Class.forName(mainClassName, true, loader);
    Method main = mainClass.getMethod("main", new Class[] {
      Array.newInstance(String.class, 0).getClass()
    });
    String[] newArgs = Arrays.asList(args)
      .subList(firstArg, args.length).toArray(new String[0]);
   try {
      //开始调用,进入我们作业的main函数
      main.invoke(null, new Object[] { newArgs });
    } catch (InvocationTargetException e) {
      throw e.getTargetException();
    }
  }
这里贴一段我们自己的main函数代码,基本都差不多所以只贴一部分
public class WordCount {
	public static void main(String[] args) throws Exception {
		// 创建一个job
		Configuration conf = new Configuration();
		Job job = new Job(conf, "WordCount");
		job.setJarByClass(WordCount.class);


		// 设置输入输出类型
		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(IntWritable.class);


		// 设置map和reduce类
		job.setMapperClass(WordCountMapper.class);
		job.setReducerClass(WordCountReduce.class);


		// 设置输入输出流
		FileInputFormat.addInputPath(job, new Path("/tmp/a.txt"));
		FileOutputFormat.setOutputPath(job, new Path("/tmp/output"));
		//等待作业完成
		System.exit(job.waitForCompletion(true)?0:1);
	}
}
下面函数能清楚的展示了客户端的流程,首先提交作业,然后不停采集作业状态,最终返回作业状态,其中我们重点分析的是submit函数
public boolean waitForCompletion(boolean verbose
                                   ) throws IOException, InterruptedException,
                                            ClassNotFoundException {
    if (state == JobState.DEFINE) {
      submit();//提交
    }
    if (verbose) {
      jobClient.monitorAndPrintJob(conf, info);
    } else {
      info.waitForCompletion();//监控
    }
    return isSuccessful();//返回
  }
在提交函数中会连接JT,然后提交该作业
  public void submit() throws IOException, InterruptedException, 
                              ClassNotFoundException {
    ensureState(JobState.DEFINE);
    setUseNewAPI();
    
    // Connect to the JobTracker and submit the job
    connect();
    info = jobClient.submitJobInternal(conf);
    super.setJobID(info.getID());
    state = JobState.RUNNING;
   }
重点是submitJobInternal函数,在该函数中会校验MR的输入输出类型,计算splits,maps,reduces,上传配置文件,jar文件、并写入split文件
public 
  RunningJob submitJobInternal(final JobConf job
                               ) throws FileNotFoundException, 
                                        ClassNotFoundException,
                                        InterruptedException,
                                        IOException {
    /*
     * configure the command line options correctly on the submitting dfs
     */
    return ugi.doAs(new PrivilegedExceptionAction() {
      public RunningJob run() throws FileNotFoundException, 
      ClassNotFoundException,
      InterruptedException,
      IOException{
        JobConf jobCopy = job;
        Path jobStagingArea = JobSubmissionFiles.getStagingDir(JobClient.this,
            jobCopy);
        JobID jobId = jobSubmitClient.getNewJobId();
        Path submitJobDir = new Path(jobStagingArea, jobId.toString());
        jobCopy.set("mapreduce.job.dir", submitJobDir.toString());
        JobStatus status = null;
        try {
          populateTokenCache(jobCopy, jobCopy.getCredentials());
          //jar文件,配置文件的上传在此完成
          copyAndConfigureFiles(jobCopy, submitJobDir);


          // get delegation token for the dir
          TokenCache.obtainTokensForNamenodes(jobCopy.getCredentials(),
                                              new Path [] {submitJobDir},
                                              jobCopy);


          Path submitJobFile = JobSubmissionFiles.getJobConfPath(submitJobDir);
          int reduces = jobCopy.getNumReduceTasks();
          InetAddress ip = InetAddress.getLocalHost();
          if (ip != null) {
            job.setJobSubmitHostAddress(ip.getHostAddress());
            job.setJobSubmitHostName(ip.getHostName());
          }
          JobContext context = new JobContext(jobCopy, jobId);


          // 检测输出目录是否合法
          if (reduces == 0 ? jobCopy.getUseNewMapper() : 
            jobCopy.getUseNewReducer()) {
            org.apache.hadoop.mapreduce.OutputFormat output =
              ReflectionUtils.newInstance(context.getOutputFormatClass(),
                  jobCopy);
            output.checkOutputSpecs(context);
          } else {
            jobCopy.getOutputFormat().checkOutputSpecs(fs, jobCopy);
          }
          
          jobCopy = (JobConf)context.getConfiguration();


          // 写入分片文件,会生成job.split job.splitmetainfo
          FileSystem fs = submitJobDir.getFileSystem(jobCopy);
          LOG.debug("Creating splits at " + fs.makeQualified(submitJobDir));
          int maps = writeSplits(context, submitJobDir);
          jobCopy.setNumMapTasks(maps);//设置map个数


          // write "queue admins of the queue to which job is being submitted"
          // 设置队列信息,默认为default队列
          String queue = jobCopy.getQueueName();
          AccessControlList acl = jobSubmitClient.getQueueAdmins(queue);
          jobCopy.set(QueueManager.toFullPropertyName(queue,
              QueueACL.ADMINISTER_JOBS.getAclName()), acl.getACLString());


          // 写配置文件job.xml     
          FSDataOutputStream out = 
            FileSystem.create(fs, submitJobFile,
                new FsPermission(JobSubmissionFiles.JOB_FILE_PERMISSION));


          try {
            jobCopy.writeXml(out);
          } finally {
            out.close();
          }
          //
          // Now, actually submit the job (using the submit name)
          //
          printTokens(jobId, jobCopy.getCredentials());
	   //真正提交作业
          status = jobSubmitClient.submitJob(
              jobId, submitJobDir.toString(), jobCopy.getCredentials());
          JobProfile prof = jobSubmitClient.getJobProfile(jobId);
          if (status != null && prof != null) {
            return new NetworkedJob(status, prof, jobSubmitClient);
          } else {
            throw new IOException("Could not launch job");
          }
        } finally {
          if (status == null) {
            LOG.info("Cleaning up the staging area " + submitJobDir);
            if (fs != null && submitJobDir != null)
              fs.delete(submitJobDir, true);
          }
        }
      }
    });
  }
下面看jar和配置文件拷贝的过程
private void copyAndConfigureFiles(JobConf job, Path submitJobDir, 
      short replication) throws IOException, InterruptedException {
    ...
    ...
    //前面是作业的一系列校验,下面的代码开始向HDFS中传送jar文件
    String originalJarPath = job.getJar();
    if (originalJarPath != null) {           // copy jar to JobTracker's fs
      // use jar name if job is not named. 
      if ("".equals(job.getJobName())){
        job.setJobName(new Path(originalJarPath).getName());
      }
     //获得需要上传的jar文件
      Path submitJarFile = JobSubmissionFiles.getJobJar(submitJobDir);
      job.setJar(submitJarFile.toString());
     //此处开始拷贝
      fs.copyFromLocalFile(new Path(originalJarPath), submitJarFile);
     //设置jar文件的副本数,在节点较多的集群中可以设置多个副本,减少TT拷贝文件到本地的时间
      fs.setReplication(submitJarFile, replication);
     //设置文件权限
      fs.setPermission(submitJarFile, 
          new FsPermission(JobSubmissionFiles.JOB_FILE_PERMISSION));
    } else {
      LOG.warn("No job jar file set.  User classes may not be found. "+
               "See JobConf(Class) or JobConf#setJar(String).");
    }
  }
另外,对于每个map输入split大小的确定也在客户端计算完成,涉及到的参数有mapred.min.split.size、mapred.max.split.size,计算方式如下:
  protected long computeSplitSize(long blockSize, long minSize,
                                  long maxSize) {
    return Math.max(minSize, Math.min(maxSize, blockSize));
  }
  因此真正split大小并不一定是我们设定的值,当然,这只是我们最常用的FileInputFormat,不同的输入类型会有不同的分割方式,FileInputFormat的分割方式如下:
public List getSplits(JobContext job
                                  ) throws IOException {
  //获得分片的设定值
  long minSize = Math.max(getFormatMinSplitSize(), getMinSplitSize(job));
  long maxSize = getMaxSplitSize(job);


  // 生成分片数据,一个作业中的输入文件可以有多个,也可以使用通配符
  List splits = new ArrayList();
  Listfiles = listStatus(job);
  //对每个输入文件进行遍历
  for (FileStatus file: files) {
    Path path = file.getPath();//获得文件路径
    FileSystem fs = path.getFileSystem(job.getConfiguration());
    long length = file.getLen();//获得文件长度
    //获得文件块分布的情况
    BlockLocation[] blkLocations = fs.getFileBlockLocations(file, 0, length);
    //判断文件是否可以分割
    if ((length != 0) && isSplitable(job, path)) { 
      long blockSize = file.getBlockSize();
      //计算分片尺寸,前面已经贴出了公式
      long splitSize = computeSplitSize(blockSize, minSize, maxSize);


      long bytesRemaining = length;
      //开始逻辑分割文件,注意如果剩余尺寸大于一个分片的1.1倍,则会继续分割,这个值在目前1.x里是写死的
      while (((double) bytesRemaining)/splitSize > SPLIT_SLOP) {
      	//获得当前分片块索引,以便构建FileSplit
        int blkIndex = getBlockIndex(blkLocations, length-bytesRemaining);
        //加入一个文件分片
        splits.add(new FileSplit(path, length-bytesRemaining, splitSize, 
                                 blkLocations[blkIndex].getHosts()));
        bytesRemaining -= splitSize;
      }
      //文件尾巴处理
      if (bytesRemaining != 0) {
        splits.add(new FileSplit(path, length-bytesRemaining, bytesRemaining, 
                   blkLocations[blkLocations.length-1].getHosts()));
      }
    } else if (length != 0) {//如果文件不可分割,则只创建一个split
      splits.add(new FileSplit(path, 0, length, blkLocations[0].getHosts()));
    } else { 
      //Create empty hosts array for zero length files
      splits.add(new FileSplit(path, 0, length, new String[0]));
    }
  }
  
  // 保存合法文件数量
  job.getConfiguration().setLong(NUM_INPUT_FILES, files.size());


  LOG.debug("Total # of splits: " + splits.size());
  return splits;
}


你可能感兴趣的:(hadoop)