/**
* Create by ~JH~ on 2018/4/12
*/
import java.io.*;
import java.util.*;
import java.util.concurrent.ThreadLocalRandom;
import java.util.function.BiConsumer;
import java.util.function.Function;
import java.util.function.BiFunction;
/**
*这个类实现了一个hash表,他是键值对的映射,任何不为空的key value都可以
*为了成功的存储和恢复对象,这个对象都要实现hashcode和equals方法
*一个hashTable的实例由两个参数影响,初始化容量和装载因子。容量是哈希表的桶的数量,初始化容量只是创建时的容量。
* 需要说明的是:当哈希冲突的时候,哈希表是开放的,一个单独的桶可以存放多个能够顺序搜索的entry,
* 在她的容量自动增长之前,装载因子用来度量哈希表允许获得的容量满的程度。
* 初始化容量和装载因子都仅仅是建议实现,什么时候是否唤醒rehash是严格要求以来实现的细节
*通常装载因子是0.75,这个提供了时间和空间上的折中。在查找一个entry(涉及到put和get)时,提高装载因子会降低空间的花费,但是时间上的花费会提高。
*
*初始化容量控制在浪费空间和rehash(浪费时间)的操作次数的折中,
* 如果初始化容量远远大于entry的数量就不会发生rehash。rform
* automatic rehashing as needed to grow the table.
*如果entry的数量特别大将要装入hashTable,创建一个足够大的容量可能会让entry插入更加高效,比起在需要时就rehash
*集合的迭代器方法返回这个类的集合视图方法是快速失败的。如果hashTable在迭代器创建之后的任何时候被结构性的改变,
*以任何方式,除了迭代器的remove方法。,迭代期都会抛出ConcurrentModificationException异常,
* 因此,在面临当前的修改时,迭代器会快速失败并且清除。而不是在将来的不确定的时间冒险的随意执行不确定的行为。
* 通过列举返回的key和元素不是快速失败的。
*这个类在Java 2 platform v1.2重新改版,是Map集合的一个成员,不像新的集合实现,
* 他是同步的,如果不需要线程安全就使用hashMap,如果是在一个高度要求线程安全就使用ConcurrentHashMap
*
* @author Arthur van Hoff
* @author Josh Bloch
* @author Neal Gafter
* @see Object#equals(java.lang.Object)
* @see Object#hashCode()
* @see Hashtable#rehash()
* @see Collection
* @see Map
* @see HashMap
* @see TreeMap
* @since JDK1.0
*/
public class Hashtable<K,V>
extends Dictionary
implements Map, Cloneable, java.io.Serializable {
/**
* The hash table data.
*/
private transient Entry,?>[] table;
/**
* The total number of entries in the hash table.
*/
private transient int count;
/**
*当这个hashtable的size超过了threshold就会被rehash,这个值是capacity*loadFactory
* @serial
*/
private int threshold;
/**
*装载因子
* @serial
*/
private float loadFactor;
/**
* hashTable被结构性修改的次数,这个量被用来记录在集合视图创建迭代器快速失败时
*/
private transient int modCount = 0;
/** use serialVersionUID from JDK 1.0.2 for interoperability 协同工作*/
private static final long serialVersionUID = 1421746759512286392L;
/**
*用指定的初始化容量和装载因子创建一个空的hashTable
* @param initialCapacity the initial capacity of the hashtable.
* @param loadFactor the load factor of the hashtable.
* @exception IllegalArgumentException if the initial capacity is less
* than zero, or if the load factor is nonpositive.
*/
public Hashtable(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal Load: "+loadFactor);
if (initialCapacity==0)
initialCapacity = 1;
this.loadFactor = loadFactor;
table = new Entry,?>[initialCapacity];
threshold = (int)Math.min(initialCapacity * loadFactor, MAX_ARRAY_SIZE + 1);
}
/**
* Constructs a new, empty hashtable with the specified initial capacity
* and default load factor (0.75).
*
* @param initialCapacity the initial capacity of the hashtable.
* @exception IllegalArgumentException if the initial capacity is less
* than zero.
*/
public Hashtable(int initialCapacity) {
this(initialCapacity, 0.75f);
}
/**
* Constructs a new, empty hashtable with a default initial capacity (11)
* and load factor (0.75).
*/
public Hashtable() {
this(11, 0.75f);
}
/**
* Constructs a new hashtable with the same mappings as the given
* Map. The hashtable is created with an initial capacity sufficient to
* hold the mappings in the given Map and a default load factor (0.75).
*
* @param t the map whose mappings are to be placed in this map.
* @throws NullPointerException if the specified map is null.
* @since 1.2
*/
public Hashtable(Map extends K, ? extends V> t) {
this(Math.max(2*t.size(), 11), 0.75f);
putAll(t);
}
/**
* Returns the number of keys in this hashtable.
*
* @return the number of keys in this hashtable.
*/
public synchronized int size() {
return count;
}
/**
* Tests if this hashtable maps no keys to values.
*
* @return true
if this hashtable maps no keys to values;
* false
otherwise.
*/
public synchronized boolean isEmpty() {
return count == 0;
}
/**
* Returns an enumeration of the keys in this hashtable.
*返回key的列表
* @return an enumeration of the keys in this hashtable.
* @see Enumeration
* @see #elements()
* @see #keySet()
* @see Map
*/
public synchronized Enumeration keys() {
return this.getEnumeration(KEYS);
}
/**
* Returns an enumeration of the values in this hashtable.
* Use the Enumeration methods on the returned object to fetch the elements
* sequentially.
*返回value的列表,继而使用列表方法取得返回的对象的元素
* @return an enumeration of the values in this hashtable.
* @see java.util.Enumeration
* @see #keys()
* @see #values()
* @see Map
*/
public synchronized Enumeration elements() {
return this.getEnumeration(VALUES);
}
/**
*测试一些key是否映射value在这个hashTable中花费会高于containsKey和containsValue
* Note that this method is identical in functionality to
* {@link #containsValue containsValue}, (which is part of the
* {@link Map} interface in the collections framework).
*
* @param value a value to search for
* @return true
if and only if some key maps to the
* value
argument in this hashtable as
* determined by the equals method;
* false
otherwise.
* @exception NullPointerException if the value is null
*/
public synchronized boolean contains(Object value) {
if (value == null) {
throw new NullPointerException();
}
Entry,?> tab[] = table;
for (int i = tab.length ; i-- > 0 ;) {
for (Entry,?> e = tab[i] ; e != null ; e = e.next) {
if (e.value.equals(value)) {
return true;
}
}
}
return false;
}
/**
* Returns true if this hashtable maps one or more keys to this value.
*
* Note that this method is identical in functionality to {@link
* #contains contains} (which predates the {@link Map} interface).
*
* @param value value whose presence in this hashtable is to be tested
* @return true if this map maps one or more keys to the
* specified value
* @throws NullPointerException if the value is null
* @since 1.2
*/
public boolean containsValue(Object value) {
return contains(value);
}
/**
* Tests if the specified object is a key in this hashtable.
*
* @param key possible key
* @return true
if and only if the specified object
* is a key in this hashtable, as determined by the
* equals method; false
otherwise.
* @throws NullPointerException if the key is null
* @see #contains(Object)
*/
public synchronized boolean containsKey(Object key) {
Entry,?> tab[] = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
for (Entry,?> e = tab[index] ; e != null ; e = e.next) {
if ((e.hash == hash) && e.key.equals(key)) {
return true;
}
}
return false;
}
/**
* Returns the value to which the specified key is mapped,
* or {@code null} if this map contains no mapping for the key.
*
* More formally, if this map contains a mapping from a key
* {@code k} to a value {@code v} such that {@code (key.equals(k))},
* then this method returns {@code v}; otherwise it returns
* {@code null}. (There can be at most one such mapping.)
*
* @param key the key whose associated value is to be returned
* @return the value to which the specified key is mapped, or
* {@code null} if this map contains no mapping for the key
* @throws NullPointerException if the specified key is null
* @see #put(Object, Object)
*/
@SuppressWarnings("unchecked")
public synchronized V get(Object key) {
Entry,?> tab[] = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
for (Entry,?> e = tab[index] ; e != null ; e = e.next) {
if ((e.hash == hash) && e.key.equals(key)) {
return (V)e.value;
}
}
return null;
}
/**
* The maximum size of array to allocate.
* Some VMs reserve some header words in an array.
* Attempts to allocate larger arrays may result in
* OutOfMemoryError: Requested array size exceeds VM limit
* 最大的分配数组大小
*/
private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
/**
* Increases the capacity of and internally reorganizes this
* hashtable, in order to accommodate and access its entries more
* efficiently. This method is called automatically when the
* number of keys in the hashtable exceeds this hashtable's capacity
* and load factor.
* 提高容量和内部重建hashaTable,为了更高效的容纳,收入的entry,这个方法时自动的,
* 当这个hashTable的key超过了她的容量和装载因子。
*/
@SuppressWarnings("unchecked")
protected void rehash() {
int oldCapacity = table.length;
Entry,?>[] oldMap = table;
// overflow-conscious code
//新的容量变为原来的2倍+1
int newCapacity = (oldCapacity << 1) + 1;
if (newCapacity - MAX_ARRAY_SIZE > 0) {
if (oldCapacity == MAX_ARRAY_SIZE)
// Keep running with MAX_ARRAY_SIZE buckets
return;
newCapacity = MAX_ARRAY_SIZE;
}
Entry,?>[] newMap = new Entry,?>[newCapacity];
modCount++;//哈希表的结构性修改
threshold = (int)Math.min(newCapacity * loadFactor, MAX_ARRAY_SIZE + 1);
table = newMap;
//将原来的hashTable数据复制到新的hashTable里面
for (int i = oldCapacity ; i-- > 0 ;) {
for (Entry old = (Entry)oldMap[i] ; old != null ; ) {
Entry e = old;
old = old.next;
int index = (e.hash & 0x7FFFFFFF) % newCapacity;
e.next = (Entry)newMap[index];
newMap[index] = e;
}
}
}
private void addEntry(int hash, K key, V value, int index) {
modCount++;
Entry,?> tab[] = table;
if (count >= threshold) {
// Rehash the table if the threshold is exceeded
rehash();
tab = table;
hash = key.hashCode();
index = (hash & 0x7FFFFFFF) % tab.length;
}
// Creates the new entry.
@SuppressWarnings("unchecked")
Entry e = (Entry) tab[index];
tab[index] = new Entry<>(hash, key, value, e);
count++;
}
/**
* Maps the specified key
to the specified
* value
in this hashtable. Neither the key nor the
* value can be null
.
*
* The value can be retrieved by calling the get
method
* with a key that is equal to the original key.
*
* @param key the hashtable key
* @param value the value
* @return the previous value of the specified key in this hashtable,
* or null
if it did not have one
* @exception NullPointerException if the key or value is
* null
* @see Object#equals(Object)
* @see #get(Object)
*/
public synchronized V put(K key, V value) {
// Make sure the value is not null
if (value == null) {
throw new NullPointerException();
}
// Makes sure the key is not already in the hashtable.
Entry,?> tab[] = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
@SuppressWarnings("unchecked")
Entry entry = (Entry)tab[index];
for(; entry != null ; entry = entry.next) {
if ((entry.hash == hash) && entry.key.equals(key)) {
V old = entry.value;
entry.value = value;
return old;
}
}
addEntry(hash, key, value, index);
return null;
}
/**
* Removes the key (and its corresponding value) from this
* hashtable. This method does nothing if the key is not in the hashtable.
*
* @param key the key that needs to be removed
* @return the value to which the key had been mapped in this hashtable,
* or null
if the key did not have a mapping
* @throws NullPointerException if the key is null
*/
public synchronized V remove(Object key) {
Entry,?> tab[] = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
@SuppressWarnings("unchecked")
Entry e = (Entry)tab[index];
for(Entry prev = null ; e != null ; prev = e, e = e.next) {
if ((e.hash == hash) && e.key.equals(key)) {
modCount++;
if (prev != null) {
prev.next = e.next;
} else {
tab[index] = e.next;
}
count--;
V oldValue = e.value;
e.value = null;
return oldValue;
}
}
return null;
}
/**
* Copies all of the mappings from the specified map to this hashtable.
* These mappings will replace any mappings that this hashtable had for any
* of the keys currently in the specified map.
*
* @param t mappings to be stored in this map
* @throws NullPointerException if the specified map is null
* @since 1.2
*/
public synchronized void putAll(Map extends K, ? extends V> t) {
for (Map.Entry extends K, ? extends V> e : t.entrySet())
put(e.getKey(), e.getValue());
}
/**
* Clears this hashtable so that it contains no keys.
*/
public synchronized void clear() {
Entry,?> tab[] = table;
modCount++;
for (int index = tab.length; --index >= 0; )
tab[index] = null;
count = 0;
}
/**
* Creates a shallow copy of this hashtable. All the structure of the
* hashtable itself is copied, but the keys and values are not cloned.
* This is a relatively expensive operation.
*支付至结构,key和value都不会复制
* @return a clone of the hashtable
*/
public synchronized Object clone() {
try {
Hashtable,?> t = (Hashtable,?>)super.clone();
t.table = new Entry,?>[table.length];
for (int i = table.length ; i-- > 0 ; ) {
t.table[i] = (table[i] != null)
? (Entry,?>) table[i].clone() : null;
}
t.keySet = null;
t.entrySet = null;
t.values = null;
t.modCount = 0;
return t;
} catch (CloneNotSupportedException e) {
// this shouldn't happen, since we are Cloneable
throw new InternalError(e);
}
}
/**
* Returns a string representation of this Hashtable object
* in the form of a set of entries, enclosed in braces and separated
* by the ASCII characters ", " (comma and space). Each
* entry is rendered as the key, an equals sign =, and the
* associated element, where the toString method is used to
* convert the key and element to strings.
*
* @return a string representation of this hashtable
*/
public synchronized String toString() {
int max = size() - 1;
if (max == -1)
return "{}";
StringBuilder sb = new StringBuilder();
Iterator> it = entrySet().iterator();
sb.append('{');
for (int i = 0; ; i++) {
Map.Entry e = it.next();
K key = e.getKey();
V value = e.getValue();
sb.append(key == this ? "(this Map)" : key.toString());
sb.append('=');
sb.append(value == this ? "(this Map)" : value.toString());
if (i == max)
return sb.append('}').toString();
sb.append(", ");
}
}
private Enumeration getEnumeration(int type) {
if (count == 0) {
return Collections.emptyEnumeration();
} else {
return new Enumerator<>(type, false);
}
}
private Iterator getIterator(int type) {
if (count == 0) {
return Collections.emptyIterator();
} else {
return new Enumerator<>(type, true);
}
}
// Views
/**
* Each of these fields are initialized to contain an instance of the
* appropriate view the first time this view is requested. The views are
* stateless, so there's no reason to create more than one of each.
*/
private transient volatile Set keySet;
private transient volatile Set> entrySet;
private transient volatile Collection values;
/**
* Returns a {@link Set} view of the keys contained in this map.
* The set is backed by the map, so changes to the map are
* reflected in the set, and vice-versa. If the map is modified
* while an iteration over the set is in progress (except through
* the iterator's own remove operation), the results of
* the iteration are undefined. The set supports element removal,
* which removes the corresponding mapping from the map, via the
* Iterator.remove, Set.remove,
* removeAll, retainAll, and clear
* operations. It does not support the add or addAll
* operations.
*
* @since 1.2
*/
public Set keySet() {
if (keySet == null)
keySet = Collections.synchronizedSet(new KeySet(), this);
return keySet;
}
private class KeySet extends AbstractSet<K> {
public Iterator iterator() {
return getIterator(KEYS);
}
public int size() {
return count;
}
public boolean contains(Object o) {
return containsKey(o);
}
public boolean remove(Object o) {
return Hashtable.this.remove(o) != null;
}
public void clear() {
Hashtable.this.clear();
}
}
/**
* Returns a {@link Set} view of the mappings contained in this map.
* The set is backed by the map, so changes to the map are
* reflected in the set, and vice-versa. If the map is modified
* while an iteration over the set is in progress (except through
* the iterator's own remove operation, or through the
* setValue operation on a map entry returned by the
* iterator) the results of the iteration are undefined. The set
* supports element removal, which removes the corresponding
* mapping from the map, via the Iterator.remove,
* Set.remove, removeAll, retainAll and
* clear operations. It does not support the
* add or addAll operations.
*
* @since 1.2
*/
public Set> entrySet() {
if (entrySet==null)
entrySet = Collections.synchronizedSet(new EntrySet(), this);
return entrySet;
}
private class EntrySet extends AbstractSet<Map.Entry<K,V>> {
public Iterator> iterator() {
return getIterator(ENTRIES);
}
public boolean add(Map.Entry o) {
return super.add(o);
}
public boolean contains(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry,?> entry = (Map.Entry,?>)o;
Object key = entry.getKey();
Entry,?>[] tab = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
for (Entry,?> e = tab[index]; e != null; e = e.next)
if (e.hash==hash && e.equals(entry))
return true;
return false;
}
public boolean remove(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry,?> entry = (Map.Entry,?>) o;
Object key = entry.getKey();
Entry,?>[] tab = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
@SuppressWarnings("unchecked")
Entry e = (Entry)tab[index];
for(Entry prev = null; e != null; prev = e, e = e.next) {
if (e.hash==hash && e.equals(entry)) {
modCount++;
if (prev != null)
prev.next = e.next;
else
tab[index] = e.next;
count--;
e.value = null;
return true;
}
}
return false;
}
public int size() {
return count;
}
public void clear() {
Hashtable.this.clear();
}
}
/**
* Returns a {@link Collection} view of the values contained in this map.
* The collection is backed by the map, so changes to the map are
* reflected in the collection, and vice-versa. If the map is
* modified while an iteration over the collection is in progress
* (except through the iterator's own remove operation),
* the results of the iteration are undefined. The collection
* supports element removal, which removes the corresponding
* mapping from the map, via the Iterator.remove,
* Collection.remove, removeAll,
* retainAll and clear operations. It does not
* support the add or addAll operations.
*
* @since 1.2
*/
public Collection values() {
if (values==null)
values = Collections.synchronizedCollection(new ValueCollection(),
this);
return values;
}
private class ValueCollection extends AbstractCollection<V> {
public Iterator iterator() {
return getIterator(VALUES);
}
public int size() {
return count;
}
public boolean contains(Object o) {
return containsValue(o);
}
public void clear() {
Hashtable.this.clear();
}
}
// Comparison and hashing
/**
* Compares the specified Object with this Map for equality,
* as per the definition in the Map interface.
*
* @param o object to be compared for equality with this hashtable
* @return true if the specified Object is equal to this Map
* @see Map#equals(Object)
* @since 1.2
*/
public synchronized boolean equals(Object o) {
if (o == this)
return true;
if (!(o instanceof Map))
return false;
Map,?> t = (Map,?>) o;
if (t.size() != size())
return false;
try {
Iterator> i = entrySet().iterator();
while (i.hasNext()) {
Map.Entry e = i.next();
K key = e.getKey();
V value = e.getValue();
if (value == null) {
if (!(t.get(key)==null && t.containsKey(key)))
return false;
} else {
if (!value.equals(t.get(key)))
return false;
}
}
} catch (ClassCastException unused) {
return false;
} catch (NullPointerException unused) {
return false;
}
return true;
}
/**
* Returns the hash code value for this Map as per the definition in the
* Map interface.
*
* @see Map#hashCode()
* @since 1.2
*/
public synchronized int hashCode() {
/*
* This code detects the recursion caused by computing the hash code
* of a self-referential hash table and prevents the stack overflow
* that would otherwise result. This allows certain 1.1-era
* applets with self-referential hash tables to work. This code
* abuses the loadFactor field to do double-duty as a hashCode
* in progress flag, so as not to worsen the space performance.
* A negative load factor indicates that hash code computation is
* in progress.
*/
int h = 0;
if (count == 0 || loadFactor < 0)
return h; // Returns zero
loadFactor = -loadFactor; // Mark hashCode computation in progress
Entry,?>[] tab = table;
for (Entry,?> entry : tab) {
while (entry != null) {
h += entry.hashCode();
entry = entry.next;
}
}
loadFactor = -loadFactor; // Mark hashCode computation complete
return h;
}
@Override
public synchronized V getOrDefault(Object key, V defaultValue) {
V result = get(key);
return (null == result) ? defaultValue : result;
}
@SuppressWarnings("unchecked")
@Override
public synchronized void forEach(BiConsumer super K, ? super V> action) {
Objects.requireNonNull(action); // explicit check required in case
// table is empty.
final int expectedModCount = modCount;
Entry, ?>[] tab = table;
for (Entry, ?> entry : tab) {
while (entry != null) {
action.accept((K)entry.key, (V)entry.value);
entry = entry.next;
if (expectedModCount != modCount) {
throw new ConcurrentModificationException();
}
}
}
}
@SuppressWarnings("unchecked")
@Override
public synchronized void replaceAll(BiFunction super K, ? super V, ? extends V> function) {
Objects.requireNonNull(function); // explicit check required in case
// table is empty.
final int expectedModCount = modCount;
Entry[] tab = (Entry[])table;
for (Entry entry : tab) {
while (entry != null) {
entry.value = Objects.requireNonNull(
function.apply(entry.key, entry.value));
entry = entry.next;
if (expectedModCount != modCount) {
throw new ConcurrentModificationException();
}
}
}
}
@Override
public synchronized V putIfAbsent(K key, V value) {
Objects.requireNonNull(value);
// Makes sure the key is not already in the hashtable.
Entry,?> tab[] = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
@SuppressWarnings("unchecked")
Entry entry = (Entry)tab[index];
for (; entry != null; entry = entry.next) {
if ((entry.hash == hash) && entry.key.equals(key)) {
V old = entry.value;
if (old == null) {
entry.value = value;
}
return old;
}
}
addEntry(hash, key, value, index);
return null;
}
@Override
public synchronized boolean remove(Object key, Object value) {
Objects.requireNonNull(value);
Entry,?> tab[] = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
@SuppressWarnings("unchecked")
Entry e = (Entry)tab[index];
for (Entry prev = null; e != null; prev = e, e = e.next) {
if ((e.hash == hash) && e.key.equals(key) && e.value.equals(value)) {
modCount++;
if (prev != null) {
prev.next = e.next;
} else {
tab[index] = e.next;
}
count--;
e.value = null;
return true;
}
}
return false;
}
@Override
public synchronized boolean replace(K key, V oldValue, V newValue) {
Objects.requireNonNull(oldValue);
Objects.requireNonNull(newValue);
Entry,?> tab[] = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
@SuppressWarnings("unchecked")
Entry e = (Entry)tab[index];
for (; e != null; e = e.next) {
if ((e.hash == hash) && e.key.equals(key)) {
if (e.value.equals(oldValue)) {
e.value = newValue;
return true;
} else {
return false;
}
}
}
return false;
}
@Override
public synchronized V replace(K key, V value) {
Objects.requireNonNull(value);
Entry,?> tab[] = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
@SuppressWarnings("unchecked")
Entry e = (Entry)tab[index];
for (; e != null; e = e.next) {
if ((e.hash == hash) && e.key.equals(key)) {
V oldValue = e.value;
e.value = value;
return oldValue;
}
}
return null;
}
@Override
public synchronized V computeIfAbsent(K key, Function super K, ? extends V> mappingFunction) {
Objects.requireNonNull(mappingFunction);
Entry,?> tab[] = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
@SuppressWarnings("unchecked")
Entry e = (Entry)tab[index];
for (; e != null; e = e.next) {
if (e.hash == hash && e.key.equals(key)) {
// Hashtable not accept null value
return e.value;
}
}
V newValue = mappingFunction.apply(key);
if (newValue != null) {
addEntry(hash, key, newValue, index);
}
return newValue;
}
@Override
public synchronized V computeIfPresent(K key, BiFunction super K, ? super V, ? extends V> remappingFunction) {
Objects.requireNonNull(remappingFunction);
Entry,?> tab[] = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
@SuppressWarnings("unchecked")
Entry e = (Entry)tab[index];
for (Entry prev = null; e != null; prev = e, e = e.next) {
if (e.hash == hash && e.key.equals(key)) {
V newValue = remappingFunction.apply(key, e.value);
if (newValue == null) {
modCount++;
if (prev != null) {
prev.next = e.next;
} else {
tab[index] = e.next;
}
count--;
} else {
e.value = newValue;
}
return newValue;
}
}
return null;
}
@Override
public synchronized V compute(K key, BiFunction super K, ? super V, ? extends V> remappingFunction) {
Objects.requireNonNull(remappingFunction);
Entry,?> tab[] = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
@SuppressWarnings("unchecked")
Entry e = (Entry)tab[index];
for (Entry prev = null; e != null; prev = e, e = e.next) {
if (e.hash == hash && Objects.equals(e.key, key)) {
V newValue = remappingFunction.apply(key, e.value);
if (newValue == null) {
modCount++;
if (prev != null) {
prev.next = e.next;
} else {
tab[index] = e.next;
}
count--;
} else {
e.value = newValue;
}
return newValue;
}
}
V newValue = remappingFunction.apply(key, null);
if (newValue != null) {
addEntry(hash, key, newValue, index);
}
return newValue;
}
@Override
public synchronized V merge(K key, V value, BiFunction super V, ? super V, ? extends V> remappingFunction) {
Objects.requireNonNull(remappingFunction);
Entry,?> tab[] = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
@SuppressWarnings("unchecked")
Entry e = (Entry)tab[index];
for (Entry prev = null; e != null; prev = e, e = e.next) {
if (e.hash == hash && e.key.equals(key)) {
V newValue = remappingFunction.apply(e.value, value);
if (newValue == null) {
modCount++;
if (prev != null) {
prev.next = e.next;
} else {
tab[index] = e.next;
}
count--;
} else {
e.value = newValue;
}
return newValue;
}
}
if (value != null) {
addEntry(hash, key, value, index);
}
return value;
}
/**
* Save the state of the Hashtable to a stream (i.e., serialize it).
*
* @serialData The capacity of the Hashtable (the length of the
* bucket array) is emitted (int), followed by the
* size of the Hashtable (the number of key-value
* mappings), followed by the key (Object) and value (Object)
* for each key-value mapping represented by the Hashtable
* The key-value mappings are emitted in no particular order.
*/
private void writeObject(java.io.ObjectOutputStream s)
throws IOException {
Entry