动态规划——矩阵链相乘

/**
 * @brief MatrixChainMultiplication  Algorithm 15.2
 * @author An
 * @data  2013.8.25                                                                  
**/

#include 
#include 
#define  N 6
using namespace std;

static int **m = new int*[N];
static int **s = new int*[N];
// static int *p = new int[N];

void MatrixChainOrder( int *p )
{
	for ( int i = 0; i != N; ++i )
	{
		m[i] = new int[N];
		s[i] = new int[N];
	}

	for ( int i = 0; i != N; ++i )
	{
		for ( int j = 0; j != N; ++j )
		{
			m[i][j] = 0;
			s[i][j] = 0;
		}
	}

	for ( int i = 0; i != N; ++i )
	{
		m[i][i] = 0;
	}

	for ( int l = 2; l <= N; ++l )
	{
		for ( int i = 0; i != N - l + 1; ++i )
		{
			int j = i + l - 1;
			m[i][j] = INT_MAX;
			for ( int k = i; k != j; ++k )
			{
				int q = m[i][k] + m[k + 1][j] + p[i] * p[k + 1] * p[j + 1]; // p+1
				if ( q < m[i][j] )
				{
					m[i][j] = q;
					s[i][j] = k;
				}
			}
		}
	}

}

void PrintOptimalParens( int **ss, int i, int j )
{
	if ( i == j )
	{
		cout << "A" << i + 1;
	}
	else
	{
		cout << "(";
		PrintOptimalParens( ss, i, s[i][j] );
		PrintOptimalParens( ss, s[i][j] + 1, j );
		cout << ")";
	}
}

void PrintMatrix( int **Ma, int length )
{
	for ( int i = 0; i != length; ++i )
	{
		for ( int j = 0; j != length; ++j )
		{
			cout << Ma[i][j] << " ";
		}
		cout << endl;
	}
	cout << endl;
}

int main()
{
	int *p = new int[N + 1];
	int a[] = { 30, 35, 15, 5, 10, 20, 25 };
	for ( int i = 0; i != N + 1; ++i )
	{
		p[i] = a[i];
	}


	MatrixChainOrder( p );
	PrintOptimalParens( s, 0, N - 1);

	cout << endl;
	PrintMatrix( m, N );
	PrintMatrix( s, N );

	return 0;
}



你可能感兴趣的:(算法,C/C++)