[线性代数]向量2-范数三角不等式证明

定理

对于所有 x , y ∈ R n , ∥ x + y ∥ ≤ ∥ x ∥ + ∥ y ∥ x, y \in \Bbb R^n, \|x+y\| \leq \|x\|+\|y\| x,yRn,x+yx+y,其中对于 x ∈ R n x \in \Bbb R^n xRn, ∥ x ∥ 2 = ∑ i = 1 n x i 2 \|x\|_2 = \sqrt{\sum_{i=1}^{n}x^2_i} x2=i=1nxi2

证明

柯西不等式:
( ∑ k = 1 n a k b k ) 2 ≤ ∑ k = 1 n a k 2 ∑ k = 1 n b k 2 \left(\sum_{k=1}^na_kb_k\right)^2 \leq \sum_{k=1}^na_k^2\sum_{k=1}^nb_k^2 (k=1nakbk)2k=1nak2k=1nbk2
利用柯西不等式,证明过程如下:
∥ x + y ∥ = ∑ i = 1 n ( x i + y i ) 2 = ∑ i = 1 n ( x i 2 + y i 2 + 2 x i y i ) \|x+y\| = \sqrt{\sum^n_{i=1}(x_i+y_i)^2} = \sqrt{\sum^n_{i=1}(x_i^2+y_i^2+2x_iy_i}) x+y=i=1n(xi+yi)2 =i=1n(xi2+yi2+2xiyi ) ≤ ∑ i = 1 n ( x i 2 + y i 2 ) + 2 ∑ i = 1 n x i 2 ∑ i = 1 n y i 2 \leq\sqrt{\sum^n_{i=1}(x_i^2+y_i^2)+2\sqrt{\sum_{i=1}^nx_i^2\sum^n_{i=1}y_i^2}} i=1n(xi2+yi2)+2i=1nxi2i=1nyi2 = ∑ i = 1 n x i 2 + ∑ i = 1 n y i 2 + 2 ∑ i = 1 n x i 2 ∑ i = 1 n y i 2 =\sqrt{\sum^n_{i=1}x_i^2+\sum^n_{i=1}y_i^2+2\sqrt{\sum^n_{i=1}x_i^2}\sqrt{\sum^n_{i=1}y_i^2}} =i=1nxi2+i=1nyi2+2i=1nxi2 i=1nyi2 = ∑ i = 1 n x i 2 + ∑ i = 1 n y i 2 =\sqrt{\sum^n_{i=1}x_i^2}+\sqrt{\sum^n_{i=1}y_i^2} =i=1nxi2 +i=1nyi2 = ∥ x ∥ + ∥ y ∥ =\|x\|+\|y\| =x+y
证毕

你可能感兴趣的:(数学)