让我们定义dn 为:dn =pn+1 −pn ,其中pi 是第i个素数。显然有d1 =1,且对于n>1有dn 是偶数。“素数对猜想”认为“存在无穷多对相邻且差为2的素数”。
现给定任意正整数N
(<105 ),请计算不超过N
的满足猜想的素数对的个数。
输入在一行给出正整数N
。
在一行中输出不超过N
的满足猜想的素数对的个数。
20
4
这题很简单,筛法打完素数表之后,直接根据N来查找dn等于2的个数(前提是pn+1≤N)即可。
#include
#include
#include
#include
#include
using namespace std;
const int maxn = 100010;
int d[maxn], prime[maxn], pNum = 0;
bool p[maxn] = {
false};
void FindPrime(){
for(int i=2;i<maxn;i++){
if(p[i]==false){
prime[pNum++] = i;
for(int j=i+i;j<maxn;j+=i) p[j] = true;
}
}
}
int main(){
FindPrime();
int N;
scanf("%d", &N);
int i = 1;
int cnt = 0;
while(prime[i+1]<=N){
d[i] = prime[i+1] - prime[i];
if(d[i]==2) cnt++;
i++;
}
printf("%d", cnt);
return 0;
}