- Python day15
@浙大疏锦行Pythonday15.内容:复习日本周主要的内容是一些常见的机器学习流程以及其中的部分内容标签编码以及连续特征的处理:归一化和正态化等。图像的绘制:热力图、Shap图等的绘制超参数优化算法:网格搜索、贝叶斯以及启发式算法模拟退火、遗传算法等不平衡数据集的处理:过采样以及欠采样。
- 探索AI人工智能中遗传算法的进化奥秘
AI学长带你学AI
人工智能ai
探索AI人工智能中遗传算法的进化奥秘关键词:遗传算法、自然选择、基因编码、适应度函数、群体进化、交叉变异、优化问题摘要:本文将用生物进化视角解读人工智能中的遗传算法原理。通过达尔文进化论的生活化比喻,结合Python代码实例演示如何模拟基因遗传、自然选择等过程,揭示遗传算法在路径规划、参数优化等场景的应用奥秘。最后探讨遗传算法的局限性与未来发展方向。背景介绍目的和范围本文旨在用通俗易懂的方式解析遗
- 深度学习超参数优化(HPO)终极指南:从入门到前沿
摘要:在深度学习的实践中,模型性能的好坏不仅取决于算法和数据,更在一半程度上取决于超参数的精妙设置。本文是一篇关于超参数优化(HyperparameterOptimization,HPO)的综合性指南,旨在带领读者从最基础的概念出发,系统性地梳理从经典到前沿的各类优化方法,并最终落地于实用策略和现代工具。无论您是初学者还是资深从业者,都能从中获得宝贵的见解。第一部分:夯实基础——HPO的核心概念1
- 操作系统级TCP性能优化:高并发场景下的内核参数调优实践
Edingbrugh.南空
运维tcp/ip性能优化网络协议
在高并发网络场景中,操作系统内核的TCP/IP协议栈配置对系统性能起着决定性作用。本文聚焦操作系统层面,深入解析内核参数调优策略,帮助读者构建稳定高效的网络通信架构。一、连接管理参数优化:从三次握手到队列控制1.1监听队列与半连接管理1.1.1net.core.somaxconn-监听套接字队列上限作用:定义listen()系统调用的积压连接队列最大值,控制未接受连接的排队长度。默认值:128(L
- Java 与 MySQL 性能优化:MySQL连接池参数优化与性能提升
程序员岳彬
Java与MySQL性能优化mysql数据库性能优化服务器后端java
文章目录引言一、连接池的基本概念与作用二、关键连接参数详解2.1max_connections2.2wait_timeout2.3interactive_timeout2.4connect_timeout2.5thread_cache_size三、连接池参数不合理导致的性能问题3.1连接耗尽3.2响应变慢3.3连接失效3.4资源浪费四、连接池参数优化方法与策略4.1max_connections的
- 上海夏致云计算数字科技公司 Java 实习面经
上海夏致云计算数字科技公司Java实习面经本文作者:程序员小白条本站地址:https://xbt.xiaobaitiao.top1)面试官:先自我介绍一下我:大家先写个文档记录一下,然后按流程进行背诵就好了,如果有新的获奖和实习,直接按时间顺序进行增加即可,面的多了基本就麻木了…2)面试官:你的项目是为了什么而做的?我:反复介绍API,自圆其说即可,我主要做了拓展,最近考虑加点东西和参数优化,别说
- mysql_multi多实例管理
周杰伦的稻香
#MYSQLmysql数据库
继上篇文章继续MySQL编译安装-CSDN博客配置/etc/my.cnf文件[mysqld_multi]mysqld=/usr/local/mysql8.0.30/bin/mysqld_safemysqladmin=/usr/local/mysql8.0.30/bin/mysqladminlog=/home/mysql8/data30/mysqld_multi.log[mysqld]user=my
- 限流、控并发、减GC!一文搞懂Go项目资源优化的正确姿势
在Go语言项目进入构建与部署阶段后,性能调优和资源控制显得尤为重要。本章将聚焦在Go程序运行效率的提升策略、资源使用的限制手段、以及结合容器/云平台的实战建议,帮助开发者打造高性能、稳定可控的生产级应用。1.编译优化1.1构建参数优化•使用-ldflags="-s-w"去除调试信息,减小二进制文件体积go build -ldflags="-s -w" -o app main.go•压缩二进制:结合
- 麒麟V10安装部署达梦数据库(单机版)
熊娜丽莎的微笑
数据库运维开发linux
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言1.单机部署过程1.1部署规划1.2数据库软件安装及环境配置1.2.1操作系统配置1.2.2数据库软件安装1.3使用dminit工具初始化实例1.4注册服务并启动实例1.5登录数据库1.6归档配置1.7定制备份策略1.8数据库参数优化1.9配置sql日志1.10迁移信息统计查询总结前言麒麟V10安装部署达梦数据库单机安装的
- nRF52832 低功耗设计与优化
mftang
zephyr架构蓝牙应用笔记NordicMCU系列笔记ZephyrRTOSzephyr架构蓝牙应用笔记
目录概述1技术背景2优化策略2.1系统级电源管理2.2时钟系统优化2.3GPIO配置优化3蓝牙协议栈优化3.1连接参数优化3.2广播优化4电源管理实践4.1功耗状态转换图4.2典型功耗分布5低功耗设计最佳实践5.1事件驱动架构5.2定时任务管理5.3数据批处理6高级优化技术6.1电压调节优化6.2RAM保持策略6.3动态功耗分析7功耗测量与验证8常见问题解决8.1功耗高于预期8.2唤醒延迟过长8.
- 开源人工神经网络库(OpenANN)
deepdata_cn
人工智能神经网络
OpenANN(OpenANN,OpenArtificialNeuralNetworkLibrary)是一个开源的人工神经网络库,基于C++编写,依赖Eigen3库进行高效的矩阵运算,使用CMake进行项目构建,支持多种神经网络架构,包括前馈神经网络、卷积神经网络和循环神经网络等,适用于图像识别、自然语言处理、时间序列预测等多种场景。提供数据预处理、模型保存和加载、超参数优化等功能。支持GPU加速
- linux 修改内核tcp参数,优化服务端高并发请求
Linux之TCPIP内核参数优化本文以Ubuntu12.04LTSDesktop(x64)默认配置为例(机器的内存为4GB),推荐先阅读《TCP连接的状态与关闭方式,及其对Server与Client的影响》、《Windows系统下的TCP参数优化》,以了解TCP优化的相关知识。/proc/sys/net目录所有的TCP/IP参数都位于/proc/sys/net目录下(请注意,对/proc/sys
- BLE HID 低功耗设计:功耗分析、影响因素与优化策略
34号树洞
#蓝牙专栏物联网专栏物联网BLEHID低功耗设计
目录一、BLEHID功耗组成二、关键功耗参数指标三、常见芯片功耗参考四、功耗优化建议1.广播阶段优化2.连接参数优化3.空闲与唤醒机制4.HID报文设计优化5.LED/指示器功耗优化五、BLEHID功耗估算案例(典型BLE键盘)六、实用工具推荐在BLEHID(BluetoothLowEnergyHumanInterfaceDevice)设备设计中,功耗是至关重要的技术指标,特别是电池供电的设备如:
- Python和OpenCV实现车牌识别的毕业设计案例
媛源啊
本文还有配套的精品资源,点击获取简介:本项目通过Python和OpenCV库,实现了一个实用的车牌识别系统,包含图像捕获、预处理、车牌定位、车牌分割和字符识别等步骤。系统提供了一键运行的完整代码,使学生能够快速掌握计算机视觉和深度学习应用。遇到的挑战和解决方案也进行了讨论,比如光照变化、车牌角度不一致和污损的处理,以及数据增强技术和模型参数优化。1.车牌识别系统的基本理论和应用1.1车牌识别的背景
- 内核参数优化记录
小坚学Linux
php网络智能路由器
文章目录参数查看和修改网络net.core.netdev_max_backlognet.core.netdev_budget_usecsnet.core.netdev_budgetnet.ipv4.conf.all.rp_filter=0net.ipv4.conf.default.rp_filter=0net.ipv4.conf.default.arp_announce=2net.ipv4.con
- 【python第三方库】Hydra库在AI项目中使用简介
文章目录一、前言1.omegaconf与Hydra库的关系2.Hydra优势二、实际用法展示1.项目结构2.配置文件3.Python代码4.运行示例4.1默认配置运行4.2从命令行覆盖配置4.3多运行模式5.超参数优化5.1安装Optuna插件5.2修改config.yaml5.3运行超参数优化一、前言Hydra是一个开源Python框架,可简化研究和其他复杂应用程序的开发。关键特性是能够通过组合
- Redis的配置与优化
MadeInSQL
运维redis数据库缓存
Redis的配置与优化是提升其性能、稳定性和安全性的关键步骤。从核心配置参数、性能优化策略、高可用与集群配置三个维度一、核心配置参数优化内存管理maxmemory:根据服务器内存设置,例如maxmemory4gb(推荐物理内存的60%-80%)。maxmemory-policy:缓存场景推荐allkeys-lru,需保证键不丢失时用volatile-lru。activedefra
- WRFDA资料同化系统在区域数值预报中的参数优化与敏感性分析
jwwkyjspt
水文大气气象气象海洋大气水文
数值预报已经成为提升预报质量的重要手段,而模式初值质量是决定数值预报质量的重要环节。资料同化作为提高模式初值质量的有效方法,成为当前气象、海洋和大气环境和水文等诸多领域科研、业务预报中的关键科学方法。资料同化新方法的快速发展,气象常规资料、卫星遥感观测和大气环境等多种资料日益增加,为资料同化的有效应用奠定了坚实的科学基础,也导致许多新的复杂科学问题,增加了实际应用的难度。为有效提升广大科研、业务人
- LVS 负载均衡群集
2301_80329775
Linux系统管理lvs负载均衡android
前言在前面已经学习了使用Nginx、LVS做负载均衡群集,它们都具有各自的特点,本章将要介绍另一款比较流行的群集调度工具Haproxy。首先介绍负载均衡常用调度算法,然后介绍Haproxy搭建Web群集的方法,最后介绍Haproxy的参数优化和日志配置。一。案例分析1.案例概述Haproxy是目前比较流行的一种群集调度工具,同类群集调度工具有很多,如LVS和Nginx。相比较而言,LVS性能最好,
- 海外VPS性能调优:Linux系统内核参数优化与网络延迟治理实践
cpsvps
php开发语言
在全球化业务部署的背景下,海外VPS的性能表现直接影响跨国服务的用户体验。本文将从Linux内核参数调优、TCP协议栈配置、文件系统缓存策略等维度,深入解析如何通过系统级优化降低跨国网络延迟,提升海外VPS的I/O吞吐量和并发处理能力,为跨境电商、国际游戏加速等场景提供技术解决方案。海外VPS性能调优:Linux系统内核参数优化与网络延迟治理实践一、海外VPS性能瓶颈的典型特征分析跨国网络环境下的
- MCP模型上下文协议:AI人工智能模型训练的自动化调参
AI天才研究院
AI人工智能与大数据人工智能自动化运维ai
MCP模型上下文协议:AI人工智能模型训练的自动化调参关键词:MCP模型、自动化调参、AI训练、超参数优化、上下文协议、机器学习、深度学习摘要:本文深入探讨MCP模型上下文协议在AI模型训练自动化调参中的应用。MCP(ModelContextProtocol)是一种创新的自动化调参框架,通过上下文感知和动态参数调整机制,显著提升模型训练效率和性能。文章将从理论基础、算法实现、数学原理到实际应用进行
- 记录一个异常检测库
STO检测王
深度学习
https://github.com/openvinotoolkit/anomalib/tree/main关于一个异常检测库,包括最先进的算法和功能,如实验管理,超参数优化和边缘推理。
- 手机屏像素缺陷修复及相关液晶线路激光修复原理
syncon12
科技制造3d
摘要手机屏像素缺陷严重影响显示效果,而液晶线路异常是导致像素缺陷的关键因素之一。激光修复技术凭借高精度与非接触特性,能够有效修复液晶线路,进而改善像素显示。本文分析手机屏像素缺陷类型,探究液晶线路激光修复原理、工艺及参数优化,为提升手机屏显示质量提供理论支撑。引言随着手机屏向高分辨率、高刷新率方向发展,像素密度不断提升,像素缺陷问题愈发凸显。液晶线路作为控制像素显示的核心结构,其断路、短路、信号传
- Python打卡:Day39
剑桥折刀s
python
知识点回顾图像数据的格式:灰度和彩色数据模型的定义显存占用的4种地方模型参数+梯度参数优化器参数数据批量所占显存神经元输出中间状态batchisize和训练的关系@浙大疏锦行
- DAY 39 图像数据与显存
小白菜333666
人工智能深度学习
知识点回顾图像数据的格式:灰度和彩色数据模型的定义显存占用的4种地方模型参数+梯度参数优化器参数数据批量所占显存神经元输出中间状态batchisize和训练的关系#先继续之前的代码importtorchimporttorch.nnasnnimporttorch.optimasoptimfromtorch.utils.dataimportDataLoader,Dataset#DataLoader是P
- DAY 39 图像数据与显存
@浙大疏锦行https://blog.csdn.net/weixin_45655710知识点回顾图像数据的格式:灰度和彩色数据模型的定义显存占用的4种地方模型参数+梯度参数优化器参数数据批量所占显存神经元输出中间状态batchisize和训练的关系作业:今日代码较少,理解内容即可黑白图像模型的定义#先归一化,再标准化transform=transforms.Compose([transforms.
- Docker容器入门
�FENG
docker容器云原生部署基础操作
目录简介一、Docker概念1.1什么是Docker容器技术1.2Docker与传统虚拟化的区别1.3Docker的核心优势二、CentOS系统Docker环境部署2.1准备工作:系统配置2.2配置阿里云镜像仓库2.3安装Docker引擎2.4内核参数优化三、Docker镜像操作3.1获取镜像:从仓库拉取资源3.2查看镜像信息:管理本地镜像库3.3镜像标签管理:为镜像添加别名3.4镜像删除与迁移:
- 05、反向传播算法(Backpropagation)是如何解决了多层神经网络的参数优化问题的?
季截
数学之美算法神经网络人工智能
反向传播算法(Backpropagation,简称BP算法)是深度学习的核心技术之一,其通过高效计算梯度并结合梯度下降法,解决了多层神经网络参数优化的计算复杂度难题。以下从原理、数学基础、执行步骤及关键价值四个维度,详细解析其工作机制:一、反向传播的核心目标:高效计算参数梯度在多层神经网络中,参数优化的本质是通过调整权重矩阵W和偏置向量b,使损失函数L最小化。而梯度下降法需要计算损失对所有参数的梯
- 上位机期末总结
莫礼奕
上位机物联网单片机学习
在现代化工厂的流水线旁,一台工控电脑的屏幕上实时跳动着数百个数据点——温度、压力、转速、良品率;在千里之外的风电场控制中心,工程师轻点鼠标便完成了对偏远机组的故障诊断与参数优化;在精密医疗设备的工作舱内,复杂的检测流程通过触摸屏上的图形化界面被精确执行...这些场景的核心支撑技术,正是上位机系统——工业自动化与信息化融合的关键纽带。一、上位机:定义、核心价值与系统定位上位机(HostCompute
- BOLL指标
函数指针
股票指标区块链
目录一.什么是BOLL指标二.核心算法实现1.基础构成(三轨系统)2.关键数学原理三、六大核心交易信号1.通道边缘反转(经典策略)2.中轨趋势判断3.带宽收缩突破(高盈亏比机会)4.通道内震荡交易5.三轨同向(强趋势信号)6.M顶/W底形态识别三、量化实战进阶技巧1.动态参数优化(波动率适配)2.多周期共振策略3.结合订单流(机构级策略)四、风控模块设计五、参数敏感度测试(黄金参数区间)六、失效场
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不