Diego 1# 机器视觉-特征点检测及跟踪

更多创客作品,请关注笔者网站园丁鸟,搜集全球极具创意,且有价值的创客作品
ROS机器人知识请关注,diegorobot
业余时间完成的一款在线统计过程分析工具SPC,及SPC知识分享网站qdo


上一节中我们实现了人脸的检测,当有人脸出现摄像头前面时,图像窗体中会用矩形显示人脸的位置,接下来我们需要实现特征值获取,及特征值跟随。本文针对Opencv3移植了ROS By Example Volume 1中的示例代码,所有代码均在opencv3环境完成测试,可以正常运行。
1.特征值获取
1.1 源代码
源文件good_features.py请见github
在Opencv中已经提供了特征值获取的方法goodFeaturesToTrack,我们只需要在程序中设定ROI,然后调用goodFeaturesToTrack就可以获取该ROI内的特征点
源代码中GoodFeatures继承自ROS2OpenCV3,并且重写了process_image函数,进行处理,并调用get_keypoints函数,在get_keypoints函数中调用goodFeaturesToTrack获取detect_box内的特征值。

#!/usr/bin/env python

import roslib
import rospy
import cv2
from ros2opencv3 import ROS2OpenCV3
import numpy as np

class GoodFeatures(ROS2OpenCV3):
    def __init__(self, node_name): 
        super(GoodFeatures, self).__init__(node_name)
          
        # Do we show text on the display?
        self.show_text = rospy.get_param("~show_text", True)
        
        # How big should the feature points be (in pixels)?
        self.feature_size = rospy.get_param("~feature_size", 1)
        
        # Good features parameters
        self.gf_maxCorners = rospy.get_param("~gf_maxCorners", 200)
        self.gf_qualityLevel = rospy.get_param("~gf_qualityLevel", 0.02)
        self.gf_minDistance = rospy.get_param("~gf_minDistance", 7)
        self.gf_blockSize = rospy.get_param("~gf_blockSize", 10)
        self.gf_useHarrisDetector = rospy.get_param("~gf_useHarrisDetector", True)
        self.gf_k = rospy.get_param("~gf_k", 0.04)
        
        # Store all parameters together for passing to the detector
        self.gf_params = dict(maxCorners = self.gf_maxCorners, 
                       qualityLevel = self.gf_qualityLevel,
                       minDistance = self.gf_minDistance,
                       blockSize = self.gf_blockSize,
                       useHarrisDetector = self.gf_useHarrisDetector,
                       k = self.gf_k)

        # Initialize key variables
        self.keypoints = list()
        self.detect_box = None
        self.mask = None
        
    def process_image(self, cv_image):
        # If the user has not selected a region, just return the image
        if not self.detect_box:
            return cv_image

        # Create a greyscale version of the image
        grey = cv2.cvtColor(cv_image, cv2.COLOR_BGR2GRAY)
        
        # Equalize the histogram to reduce lighting effects
        grey = cv2.equalizeHist(grey)

        # Get the good feature keypoints in the selected region
        keypoints = self.get_keypoints(grey, self.detect_box)
        
        # If we have points, display them
        if keypoints is not None and len(keypoints) > 0:
            for x, y in keypoints:
                cv2.circle(self.marker_image, (x, y), self.feature_size, (0, 255, 0, 0), cv2.FILLED, 8, 0)
        # Process any special keyboard commands
        if 32 <= self.keystroke and self.keystroke < 128:
            cc = chr(self.keystroke).lower()
            if cc == 'c':
                # Clear the current keypoints
                keypoints = list()
                self.detect_box = None
                                
        return cv_image        

    def get_keypoints(self, input_image, detect_box):
        # Initialize the mask with all black pixels
        self.mask = np.zeros_like(input_image)
 
        # Get the coordinates and dimensions of the detect_box
        try:
            x, y, w, h = detect_box
        except: 
            return None
        
        # Set the selected rectangle within the mask to white
        self.mask[y:y+h, x:x+w] = 255

        # Compute the good feature keypoints within the selected region
        keypoints = list()
        kp = cv2.goodFeaturesToTrack(input_image, mask = self.mask, **self.gf_params)
        if kp is not None and len(kp) > 0:
            for x, y in np.float32(kp).reshape(-1, 2):
                keypoints.append((x, y))
                
        return keypoints

if __name__ == '__main__':
    try:
        node_name = "good_features"
        GoodFeatures(node_name)
        rospy.spin()
    except KeyboardInterrupt:
        print "Shutting down the Good Features node."
        cv2.destroyAllWindows()

1.2.launch文件


 

 
 
 
 gf_maxCorners: 200
 gf_qualityLevel: 0.02
 gf_minDistance: 7
 gf_blockSize: 10
 gf_useHarrisDetector: False
 gf_k: 0.04
 feature_size: 1
 show_text: True
 
 
 

2.特征值跟随
1.1源代码
源文件lk_tracker.py请见github
在Opencv中提供了方法calcOpticalFlowPyrLK提供在视频中连续帧特征点的匹配,其使用的算法是Lucas–Kanade method,有兴趣的同学去深入了解算法。
源代码中LKTracker继承自GoodFeatures,并且重写了process_image函数,进行处理,并调用track_keypoints函数,在track_keypoints函数中调用calcOpticalFlowPyrLK方法进行特征点跟踪。

#!/usr/bin/env python

import roslib
import rospy
import cv2
import numpy as np
from good_features import GoodFeatures

class LKTracker(GoodFeatures):
    def __init__(self, node_name):
        super(LKTracker, self).__init__(node_name)
        
        self.show_text = rospy.get_param("~show_text", True)
        self.feature_size = rospy.get_param("~feature_size", 1)
                
        # LK parameters
        self.lk_winSize = rospy.get_param("~lk_winSize", (10, 10))
        self.lk_maxLevel = rospy.get_param("~lk_maxLevel", 2)
        self.lk_criteria = rospy.get_param("~lk_criteria", (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 20, 0.01))
        
        self.lk_params = dict( winSize  = self.lk_winSize, 
                  maxLevel = self.lk_maxLevel, 
                  criteria = self.lk_criteria)    
        
        self.detect_interval = 1
        self.keypoints = None

        self.detect_box = None
        self.track_box = None
        self.mask = None
        self.grey = None
        self.prev_grey = None
            
    def process_image(self, cv_image):
        # If we don't yet have a detection box (drawn by the user
        # with the mouse), keep waiting
        if self.detect_box is None:
            return cv_image

        # Create a greyscale version of the image
        self.grey = cv2.cvtColor(cv_image, cv2.COLOR_BGR2GRAY)
        
        # Equalize the grey histogram to minimize lighting effects
        self.grey = cv2.equalizeHist(self.grey)
        
        # If we haven't yet started tracking, set the track box to the
        # detect box and extract the keypoints within it
        if self.track_box is None or not self.is_rect_nonzero(self.track_box):
            self.track_box = self.detect_box
            self.keypoints = self.get_keypoints(self.grey, self.track_box)
        
        else:
            if self.prev_grey is None:
                self.prev_grey = self.grey
    
            # Now that have keypoints, track them to the next frame
            # using optical flow
            self.track_box = self.track_keypoints(self.grey, self.prev_grey)

        # Process any special keyboard commands for this module
        if 32 <= self.keystroke and self.keystroke < 128:
            cc = chr(self.keystroke).lower()
            if cc == 'c':
                # Clear the current keypoints
                self.keypoints = None
                self.track_box = None
                self.detect_box = None
                
        self.prev_grey = self.grey
                
        return cv_image               
                    
    def track_keypoints(self, grey, prev_grey):
        # We are tracking points between the previous frame and the
        # current frame
        img0, img1 = prev_grey, grey
        
        # Reshape the current keypoints into a numpy array required
        # by calcOpticalFlowPyrLK()
        p0 = np.float32([p for p in self.keypoints]).reshape(-1, 1, 2)
        
        # Calculate the optical flow from the previous frame to the current frame
        p1, st, err = cv2.calcOpticalFlowPyrLK(img0, img1, p0, None, **self.lk_params)
        
        # Do the reverse calculation: from the current frame to the previous frame
        try:
            p0r, st, err = cv2.calcOpticalFlowPyrLK(img1, img0, p1, None, **self.lk_params)
            
            # Compute the distance between corresponding points in the two flows
            d = abs(p0-p0r).reshape(-1, 2).max(-1)
            
            # If the distance between pairs of points is < 1 pixel, set
            # a value in the "good" array to True, otherwise False
            good = d < 1
        
            # Initialize a list to hold new keypoints
            new_keypoints = list()
            
            # Cycle through all current and new keypoints and only keep
            # those that satisfy the "good" condition above
            for (x, y), good_flag in zip(p1.reshape(-1, 2), good):
                if not good_flag:
                    continue
                new_keypoints.append((x, y))
                
                # Draw the keypoint on the image
                cv2.circle(self.marker_image, (x, y), self.feature_size, (0, 255, 0, 0), cv2.FILLED, 8, 0)
            # Set the global keypoint list to the new list    
            self.keypoints = new_keypoints
            
            # If we have enough points, find the best fit ellipse around them
            if len(self.keypoints) > 6:
                keypoints_array = np.float32([p for p in self.keypoints]).reshape(-1, 1, 2)  
                track_box = cv2.fitEllipse(keypoints_array)
            else:
                # Otherwise, find the best fitting rectangle
                track_box = cv2.boundingRect(keypoints_matrix)
        except:
            track_box = None
                        
        return track_box
    
if __name__ == '__main__':
    try:
        node_name = "lk_tracker"
        LKTracker(node_name)
        rospy.spin()
    except KeyboardInterrupt:
        print "Shutting down LK Tracking node."
        cv2.destroyAllWindows()
    

2.2 launch文件


   
   

   
       show_text: True
       gf_maxCorners: 200
       gf_qualityLevel: 0.02
       gf_minDistance: 7
       gf_blockSize: 10
       gf_useHarrisDetector: False
       gf_k: 0.04
       feature_size: 1
   

   

3.测试
首先启动运行xtion摄像头

roslaunch diego_vision openni_node.launch

启动lk_tracker

roslaunch diego_vision lk_tracker.launch

启动后会出现视频窗体,用鼠标选择ROI,然后就会看到在ROI中检测到的特征点,这时候我们如果移动ROI内的物体,就会看到矩形框始终会定位到开始选择的物体,跟随物体的移动而移动。
下图是本人测试的结果:ROI选择在手部位置,当我移动手的位置时,矩形框就会跟随移动。
Diego 1# 机器视觉-特征点检测及跟踪_第1张图片

你可能感兴趣的:(机器人,ROS,linux)