- “相关分析”
不解风情的老妖怪哎
数据分析学习笔记数据分析大数据
一、相关分析的核心概念1.定义(1)衡量两个或多个变量之间的线性或单调关系的强度和方向(正/负相关)。(2)注意:相关性≠因果关系。2.相关系数的范围(1)取值范围为[-1,1]:1:完全正相关-1:完全负相关0:无线性相关3.应用场景(1)探索变量间的潜在关系(如收入与消费水平、广告投入与销售额)。(2)辅助特征选择(如剔除高度相关的变量,避免多重共线性)。二、常用相关系数及方法1.Pearso
- 决策树算法
雨巷码行人
机器学习算法决策树机器学习
文章目录基本概念与原理决策树定义两种理解视角模型构建三要素1.特征选择(1)信息增益(ID3算法)(2)信息增益比(C4.5算法)(3)基尼指数(CART算法)2.决策树生成3.决策树剪枝(1)预剪枝(Pre-pruning)(2)后剪枝(Post-pruning)决策树算法对比CART回归树生成Scikit-learn实现分类树CART决策树-回归树决策树优劣势总结基本概念与原理决策树定义树形结
- 解锁决策树:数据挖掘的智慧引擎
目录一、决策树:数据挖掘的基石二、决策树原理剖析2.1决策树的基本结构2.2决策树的构建流程2.2.1特征选择2.2.2数据集划分2.2.3递归构建三、决策树的实践应用3.1数据准备3.2模型构建与训练3.3模型评估四、决策树的优化策略4.1剪枝策略4.1.1预剪枝4.1.2后剪枝4.2集成学习五、案例分析5.1医疗诊断案例5.2金融风险评估案例六、总结与展望一、决策树:数据挖掘的基石在当今数字化
- 无监督学习中的特征选择与检测(FSD)在医疗动线流程优化中的应用
Allen_Lyb
医疗高效编程研发学习健康医疗架构人工智能
无监督学习中的特征选择与检测(FeatureSelectionandDetection,FSD)算法在医疗动线流程优化中具有重要的应用价值,尤其适用于从海量、复杂且缺乏明确标签的医疗行为数据中自动挖掘关键模式和瓶颈。以下是如何编程实现这种应用的思路和步骤:引言医疗动线流程优化是提升医疗机构运营效率、改善患者体验的关键领域。传统的流程优化方法往往依赖于人工观察和经验分析,难以从海量、复杂且缺乏明确标
- 机器学习与深度学习22-数据预处理
my_q
机器学习与深度学习机器学习深度学习人工智能
目录前文回顾1.常见的数据质量问题2.归一化和标准化3.特征选择和特征提取4.独热编码前文回顾上一篇文章地址:链接1.常见的数据质量问题在数据预处理过程中,常见的数据质量问题包括缺失值、异常值和重复数据。以下是这些问题的详细描述以及处理方法:缺失值:缺失值是指数据表中某些单元格或字段缺乏数值或信息的情况处理方法:删除包含缺失值的行:如果缺失值数量较少,可以考虑删除包含缺失值的行,但这可能导致信息损
- 机器学习中的数据预处理:清洗、转换与标准化
CarlowZJ
AI+大模型微调机器学习人工智能
目录一、前言二、数据预处理的基本概念(一)数据预处理的定义(二)数据预处理的重要性三、数据预处理的常用方法(一)数据清洗(二)特征选择(三)特征转换(四)数据标准化四、数据预处理的代码示例(一)环境准备(二)数据加载与清洗(三)特征标准化(四)特征选择五、数据预处理的应用场景(一)分类任务(二)回归任务(三)时间序列预测六、数据预处理的注意事项(一)数据质量(二)特征选择方法的选择(三)标准化方法
- 机器学习中常见搜索算法
机器学习中的搜索算法主要用于优化模型参数、特征选择、超参数调优或近似最近邻搜索等任务。常见的搜索算法分类及典型方法如下1.参数/超参数搜索算法(1)网格搜索(GridSearch)原理:遍历所有可能的参数组合,选择最优解。优点:简单、全局最优。缺点:计算成本高,维数灾难。工具:sklearn.model_selection.GridSearchCVfromsklearn.model_selecti
- 数据清洗——利用机器学习方法进行健康智能诊断
丢不掉的喜欢
机器学习人工智能
1.数据预处理与质量控制:目的:确保数据的完整性和准确性,为后续的分析和建模提供可靠的基础。具体操作:通过识别并填补缺失值,解决数据不完整的问题,减少因数据缺失导致的偏差。2.探索性数据分析(EDA):目的:理解数据的分布特性、趋势以及不同特征之间的关系,为后续建模提供洞察。具体操作:通过分组对比不同年龄、性别的人群中患病占比,揭示潜在的患病风险因素,为模型特征选择提供依据。3.分类建模与评估:目
- 打卡第二十天
Shining_Jiang
机器学习人工智能
方差筛选方差筛选是一种基于特征方差的特征选择方法。通过计算每个特征的方差,剔除方差较小的特征,因为这些特征对模型的贡献较小。皮尔逊相关系数筛选皮尔逊相关系数用于衡量特征与目标变量之间的线性相关性。通过计算每个特征与目标变量的相关系数,选择相关性较高的特征。Lasso筛选Lasso回归是一种带有L1正则化的线性回归方法,能够通过正则化系数将某些特征的权重压缩为零,从而实现特征选择。树模型重要性树模型
- Python实战笔记-常用知识点
MMGNFT
K总编程笔记
一、自学Python的最终的目标是a,实现自动化办公b,实现数据的爬取c,实现基本的数据分析(SEMMA)S:Sample(收集数据)常用手段:问卷调查,数据库查询,实验室实验,仪器设备的记录E:Explore(数据探索)探索方向:离散变量的分布比例,连续变量的分布形态,数据的异常和缺失,特征选择M:Modify(数据修正)常用修正方法:数据类型的转换,数据的一致性处理,异常值和缺失值的处理,数据
- 决策树-机器学习
ma_ant
机器学习算法决策树机器学习
一.决策树简介1.什么是决策树决策树是一种树形结构,树中每个内部节点表示一个特征上的判断,每个分支代表一个判断结果的输出,每个叶子节点代表一种分类结果。它主要用于分类和回归任务,通过递归地分裂数据集构建树状结构。2.决策树构建过程(三要素)①特征选择:选择较强分类能力的特征②决策树的生成:根据选择的特征生成决策树③决策树的剪枝:决策树也容易过拟合,采用剪枝的方法缓解过拟合3.优缺点及应用优点:可解
- 特征分析工程化
梨V_v
文献深度学习人工智能神经网络笔记
scikit功能Python中的特征选择存储库scikit-feature。scikit-feature是一个开源的Python特征选择库,由亚利桑那州立大学数据挖掘与机器学习实验室开发。它基于一个广泛使用的机器学习包scikit-learn以及两个科学计算包Numpy和Scipy构建。scikit-feature包含大约40种流行的特征选择算法,包括传统的特征选择算法以及一些结构化和流式特征选择
- 机器学习回归预测中预处理的特征工程
Studying 开龙wu
机器学习理论(分类回归)机器学习回归人工智能
1.项目目标和数据分析2.数据预处理3.特征构造与生成4.特征选择5.时间序列回归预测-——引用风速预测案列简单说明 在机器学习回归预测中,特征工程是至关重要的环节,它能显著提升模型的性能和预测准确性。这里从一个项目开始分析到最终确定特征的思考,本文章先主要理论说明,后续会对每一个方法和用法进行单独说明和代码示例。说明的涉及领域比较多,方法都可以用代码实现。一、项目目标和数据分析1.明确业务目标
- 自然语言处理学习路线
熬夜造bug
自然语言处理(NLP)自然语言处理学习人工智能python
学习目标NLP系统知识(从入门到入土)学习内容NLP的基本流程:自然语言处理学习路线(1)——NLP的基本流程-CSDN博客语料预处理:(待更)特征工程之向量化(word——>vector):(待更)特征工程之特征选择:(待更)序列网络在NLP领域的应用(RNN、GRU、LSTM):(待更)预训练模型(ELMO、Bert、T5、GPT、Transformer):(待更)文本分类(Fasttext、
- 基于线性回归的数据预测
所见即所得11111
线性回归算法回归
1.自主选择一个公开回归任务数据集(如房价预测、医疗数据、空气质量预测等,可Kaggle)。2.数据预处理:完成标准化(Normalization)、特征选择或缺失值处理等步骤。3.使用线性回归模型进行建模。采用80%数据用于训练,20%用于测试,重复划分数据集并训练模型20次,记录每次结果(交叉验证)。4.输出平均均方误差(MSE)或平均绝对误差(MAE),并可选与其他模型(如决策树回归、岭回归
- sklearn基础教程:从入门到精通
洛秋_
机器学习
文章目录sklearn基础教程:从入门到精通一、sklearn简介二、安装与配置三、数据预处理数据导入数据清洗特征选择数据标准化与归一化四、常用模型介绍与应用线性回归逻辑回归决策树支持向量机K近邻算法随机森林集成学习五、模型评估与调优交叉验证网格搜索模型评估指标六、实战案例波士顿房价预测手写数字识别客户流失预测七、测试接口与详细解释单元测试接口测试八、总结个人博客【洛秋小站】洛秋资源小站【洛秋资源
- 机器学习笔记——特征工程
好评笔记
机器学习人工智能深度学习AIGC算法岗校招实习
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本笔记介绍机器学习中常见的特征工程方法、正则化方法和简要介绍强化学习。文章目录特征工程(FzeatureEngineering)1.特征提取(FeatureExtraction)手工特征提取(ManualFeatureExtraction):自动特征提取(AutomatedFeatureExtraction):2.特征选择
- 机器学习第十二讲:特征选择 → 选最重要的考试科目做录取判断
机器学习第十二讲:特征选择→选最重要的考试科目做录取判断资料取自《零基础学机器学习》。查看总目录:学习大纲关于DeepSeek本地部署指南可以看下我之前写的文章:DeepSeekR1本地与线上满血版部署:超详细手把手指南一、学霸选科法则(特征选择基础逻辑,材料2的3.章节[2-3]比喻:某大学要从200科成绩中选出关键指标:graphTDA[全科成绩]-->B{"数学/语文超强相关性"}A-->C
- 第二十三天打卡
不爱吃山楂罐头
python打卡python
作业:整理下全部逻辑的先后顺序,看看能不能制作出适合所有机器学习的通用pipeline数据预处理→特征选择→降维→模型训练importpandasaspdimportnumpyasnpfromsklearn.model_selectionimporttrain_test_split,GridSearchCVfromsklearn.composeimportColumnTransformerfrom
- 连续变量与离散变量的互信息法
从零开始学习人工智能
机器学习
1.互信息法简介互信息(MutualInformation,MI)是一种衡量两个变量之间相互依赖程度的统计量,它来源于信息论。互信息可以用于评估特征与目标变量之间的相关性,无论这些变量是连续的还是离散的。互信息法是一种强大的特征选择方法,尤其适用于处理复杂的特征与目标变量之间的非线性关系。互信息的基本思想是:如果两个变量之间存在某种依赖关系,那么知道其中一个变量的值可以减少对另一个变量的不确定性。
- 2025年深圳杯-东三省联赛D题参考论文发布!
BZD数模社
数学建模
2025深圳杯-东三省D题两版本区别BZD数模社名称D题第一版D题第二版基本信息使用语言matlabpython文章篇幅60页3.4万字45页2.5万字问题一模型决策树、随机森林、KNN、(SVM)、逻辑回归神经网络、集成模型、XGBoost层感知器、随机森林、LightGBM和梯度提升精度准确率:0.7500最高准确率96.57%特点特征选择、超参数优化、类别不平衡处理和集成学高精度BZD数模社
- 线性回归算法解密:从基础到实战的完整指南
智能计算研究中心
其他
内容概要线性回归算法是统计学与机器学习中一种常用的预测方法,它的核心思想是通过学习输入特征与输出变量之间的关系,以便对未来的数据进行预测。本文将从线性回归的基本概念入手,逐步深入,帮助读者全面掌握这一算法。本文旨在为读者提供系统而清晰的线性回归知识框架,以便在实际应用中能够灵活运用。首先,我们将解释线性回归的数学原理,包括如何构建模型以及利用最小二乘法进行参数估计。接着,针对数据预处理与特征选择,
- Moe(混合专家)架构和Dense架构对比?
zhangzeyuaaa
大模型架构
MoE架构和Dense架构有以下一些对比:结构设计MoE架构:将模型拆分为多个“专家”网络,由门控网络根据输入特征选择Top-K个相关专家进行计算,实现“稀疏计算”。Dense架构:采用传统Transformer架构,包含编码器-解码器层等基本结构,每次计算激活的参数量就是整个模型的全部参数。计算效率MoE架构:仅激活部分专家,极大减少了计算量,降低算力消耗,在扩大模型规模时可保持计算成本相对固定
- Python数据分析与机器学习在金融风控中的应用
屿小夏
科技前沿python数据分析机器学习
文章目录引言一、金融风控的现状与挑战二、数据收集与预处理2.1数据收集2.2数据预处理三、信用风险评估模型3.1特征选择与提取3.2数据划分3.3模型训练3.4模型评估四、市场风险管理模型4.1数据收集与预处理4.2特征选择与提取4.3数据划分4.4模型训练4.5模型评估五、操作风险监控模型5.1数据收集与预处理5.2特征选择与提取5.3数据划分5.4模型训练5.5模型评估六、小结引言金融风控是金
- LLM4FS: Leveraging Large Language Models for Feature Selection and How to Improve It
UnknownBody
LLMDaily语言模型人工智能自然语言处理
文章主要内容总结:本文探讨了利用大型语言模型(LLMs)进行特征选择的潜力,并提出了一种名为LLM4FS的混合策略。主要内容包括:LLM性能评估:对比了DeepSeek-R1、GPT-o3mini和GPT-4.5在特征选择任务中的表现,发现DeepSeek-R1与GPT-4.5性能接近,且成本更低。混合策略LLM4FS:通过让LLM直接调用传统数据驱动方法(如随机森林、前向/后向选择等),结合LL
- 离散特征的处理
zx43
python训练营打卡内容python开发语言
离散特征的处理读取数据找到所有离散特征选择一个离散特征进行独热编码采取循环对所有离散特征进行独热编码加上昨天的内容并且处理所有缺失值data=pd.read_excel('data.xlsx')#找到离散变量discrete_lists=[]fordiscrete_featuresindata.columns:ifdata[discrete_features].dtype=='object':di
- 量子退火驱动的图粗化预处理与特征选择加速体系
百态老人
量子计算
一、图粗化与特征选择的量子计算范式转换图粗化(GraphCoarsening)作为处理大规模复杂网络的核心预处理技术,通过节点聚类、边收缩等操作将原始图简化为粗粒度拓扑结构,以降低后续计算复杂度。传统基于经典算法的粗化方法(如代数多重网格、谱聚类)在动态特征保持与多尺度关联性建模方面存在瓶颈,而量子退火机(如D-WaveAdvantage™)凭借量子隧穿效应和并行能量面搜索能力,为解决该问题提供了
- 决策树详解+面试常见问题
心想事“程”
机器学习决策树算法机器学习
一、决策树详解1.定义决策树是一种基于树结构进行决策的机器学习模型。它由节点和边组成,节点分为根节点、内部节点和叶节点。根节点是决策树的起始点,内部节点表示属性上的测试,边表示测试结果,叶节点代表决策结果,通过对数据属性的不断划分来构建树状结构以实现分类或回归任务。2.构建过程特征选择:选择最有区分度的属性作为节点划分依据。常用方法有信息增益(如ID3算法)、信息增益比(如C4.5算法)、基尼指数
- 2025.04.08【工具探索】| SC3:交互式聚类分析的新纪元
穆易青
ClusteringInteractive
文章目录1.SC3工具简介:探索生物信息学中的聚类分析利器1.1为什么选择SC3?1.2SC3的主要功能2.SC3的安装方法:轻松步入单细胞数据分析的大门2.1安装R语言环境2.2安装SC3包2.3安装依赖包3.SC3常用命令:掌握高效数据分析的钥匙3.1数据预处理3.2特征选择3.3聚类分析3.4结果可视化3.5高级分析4.SC3的案例研究4.1数据获取4.2数据预处理和特征选择4.3聚类分析4
- MATLAB代码主要实现了对股票数据的处理、特征工程、特征选择以及使用随机森林和支持向量机(SVM)进行建模和评估
神经网络15044
仿真深度学习算法支持向量机matlab随机森林
clear;clc;close;sDataPath=fullfile(getenv('HOME'),'Desktop','StockData');addpath(sDataPath);%DatenladenA=readtable('A.csv','VariableNamingRule','preserve');Fangzheng=readtable('fangzheng.csv','Variabl
- Algorithm
香水浓
javaAlgorithm
冒泡排序
public static void sort(Integer[] param) {
for (int i = param.length - 1; i > 0; i--) {
for (int j = 0; j < i; j++) {
int current = param[j];
int next = param[j + 1];
- mongoDB 复杂查询表达式
开窍的石头
mongodb
1:count
Pg: db.user.find().count();
统计多少条数据
2:不等于$ne
Pg: db.user.find({_id:{$ne:3}},{name:1,sex:1,_id:0});
查询id不等于3的数据。
3:大于$gt $gte(大于等于)
&n
- Jboss Java heap space异常解决方法, jboss OutOfMemoryError : PermGen space
0624chenhong
jvmjboss
转自
http://blog.csdn.net/zou274/article/details/5552630
解决办法:
window->preferences->java->installed jres->edit jre
把default vm arguments 的参数设为-Xms64m -Xmx512m
----------------
- 文件上传 下载 解析 相对路径
不懂事的小屁孩
文件上传
有点坑吧,弄这么一个简单的东西弄了一天多,身边还有大神指导着,网上各种百度着。
下面总结一下遇到的问题:
文件上传,在页面上传的时候,不要想着去操作绝对路径,浏览器会对客户端的信息进行保护,避免用户信息收到攻击。
在上传图片,或者文件时,使用form表单来操作。
前台通过form表单传输一个流到后台,而不是ajax传递参数到后台,代码如下:
<form action=&
- 怎么实现qq空间批量点赞
换个号韩国红果果
qq
纯粹为了好玩!!
逻辑很简单
1 打开浏览器console;输入以下代码。
先上添加赞的代码
var tools={};
//添加所有赞
function init(){
document.body.scrollTop=10000;
setTimeout(function(){document.body.scrollTop=0;},2000);//加
- 判断是否为中文
灵静志远
中文
方法一:
public class Zhidao {
public static void main(String args[]) {
String s = "sdf灭礌 kjl d{';\fdsjlk是";
int n=0;
for(int i=0; i<s.length(); i++) {
n = (int)s.charAt(i);
if((
- 一个电话面试后总结
a-john
面试
今天,接了一个电话面试,对于还是初学者的我来说,紧张了半天。
面试的问题分了层次,对于一类问题,由简到难。自己觉得回答不好的地方作了一下总结:
在谈到集合类的时候,举几个常用的集合类,想都没想,直接说了list,map。
然后对list和map分别举几个类型:
list方面:ArrayList,LinkedList。在谈到他们的区别时,愣住了
- MSSQL中Escape转义的使用
aijuans
MSSQL
IF OBJECT_ID('tempdb..#ABC') is not null
drop table tempdb..#ABC
create table #ABC
(
PATHNAME NVARCHAR(50)
)
insert into #ABC
SELECT N'/ABCDEFGHI'
UNION ALL SELECT N'/ABCDGAFGASASSDFA'
UNION ALL
- 一个简单的存储过程
asialee
mysql存储过程构造数据批量插入
今天要批量的生成一批测试数据,其中中间有部分数据是变化的,本来想写个程序来生成的,后来想到存储过程就可以搞定,所以随手写了一个,记录在此:
DELIMITER $$
DROP PROCEDURE IF EXISTS inse
- annot convert from HomeFragment_1 to Fragment
百合不是茶
android导包错误
创建了几个类继承Fragment, 需要将创建的类存储在ArrayList<Fragment>中; 出现不能将new 出来的对象放到队列中,原因很简单;
创建类时引入包是:import android.app.Fragment;
创建队列和对象时使用的包是:import android.support.v4.ap
- Weblogic10两种修改端口的方法
bijian1013
weblogic端口号配置管理config.xml
一.进入控制台进行修改 1.进入控制台: http://127.0.0.1:7001/console 2.展开左边树菜单 域结构->环境->服务器-->点击AdminServer(管理) &
- mysql 操作指令
征客丶
mysql
一、连接mysql
进入 mysql 的安装目录;
$ bin/mysql -p [host IP 如果是登录本地的mysql 可以不写 -p 直接 -u] -u [userName] -p
输入密码,回车,接连;
二、权限操作[如果你很了解mysql数据库后,你可以直接去修改系统表,然后用 mysql> flush privileges; 指令让权限生效]
1、赋权
mys
- 【Hive一】Hive入门
bit1129
hive
Hive安装与配置
Hive的运行需要依赖于Hadoop,因此需要首先安装Hadoop2.5.2,并且Hive的启动前需要首先启动Hadoop。
Hive安装和配置的步骤
1. 从如下地址下载Hive0.14.0
http://mirror.bit.edu.cn/apache/hive/
2.解压hive,在系统变
- ajax 三种提交请求的方法
BlueSkator
Ajaxjqery
1、ajax 提交请求
$.ajax({
type:"post",
url : "${ctx}/front/Hotel/getAllHotelByAjax.do",
dataType : "json",
success : function(result) {
try {
for(v
- mongodb开发环境下的搭建入门
braveCS
运维
linux下安装mongodb
1)官网下载mongodb-linux-x86_64-rhel62-3.0.4.gz
2)linux 解压
gzip -d mongodb-linux-x86_64-rhel62-3.0.4.gz;
mv mongodb-linux-x86_64-rhel62-3.0.4 mongodb-linux-x86_64-rhel62-
- 编程之美-最短摘要的生成
bylijinnan
java数据结构算法编程之美
import java.util.HashMap;
import java.util.Map;
import java.util.Map.Entry;
public class ShortestAbstract {
/**
* 编程之美 最短摘要的生成
* 扫描过程始终保持一个[pBegin,pEnd]的range,初始化确保[pBegin,pEnd]的ran
- json数据解析及typeof
chengxuyuancsdn
jstypeofjson解析
// json格式
var people='{"authors": [{"firstName": "AAA","lastName": "BBB"},'
+' {"firstName": "CCC&
- 流程系统设计的层次和目标
comsci
设计模式数据结构sql框架脚本
流程系统设计的层次和目标
 
- RMAN List和report 命令
daizj
oraclelistreportrman
LIST 命令
使用RMAN LIST 命令显示有关资料档案库中记录的备份集、代理副本和映像副本的
信息。使用此命令可列出:
• RMAN 资料档案库中状态不是AVAILABLE 的备份和副本
• 可用的且可以用于还原操作的数据文件备份和副本
• 备份集和副本,其中包含指定数据文件列表或指定表空间的备份
• 包含指定名称或范围的所有归档日志备份的备份集和副本
• 由标记、完成时间、可
- 二叉树:红黑树
dieslrae
二叉树
红黑树是一种自平衡的二叉树,它的查找,插入,删除操作时间复杂度皆为O(logN),不会出现普通二叉搜索树在最差情况时时间复杂度会变为O(N)的问题.
红黑树必须遵循红黑规则,规则如下
1、每个节点不是红就是黑。 2、根总是黑的 &
- C语言homework3,7个小题目的代码
dcj3sjt126com
c
1、打印100以内的所有奇数。
# include <stdio.h>
int main(void)
{
int i;
for (i=1; i<=100; i++)
{
if (i%2 != 0)
printf("%d ", i);
}
return 0;
}
2、从键盘上输入10个整数,
- 自定义按钮, 图片在上, 文字在下, 居中显示
dcj3sjt126com
自定义
#import <UIKit/UIKit.h>
@interface MyButton : UIButton
-(void)setFrame:(CGRect)frame ImageName:(NSString*)imageName Target:(id)target Action:(SEL)action Title:(NSString*)title Font:(CGFloa
- MySQL查询语句练习题,测试足够用了
flyvszhb
sqlmysql
http://blog.sina.com.cn/s/blog_767d65530101861c.html
1.创建student和score表
CREATE TABLE student (
id INT(10) NOT NULL UNIQUE PRIMARY KEY ,
name VARCHAR
- 转:MyBatis Generator 详解
happyqing
mybatis
MyBatis Generator 详解
http://blog.csdn.net/isea533/article/details/42102297
MyBatis Generator详解
http://git.oschina.net/free/Mybatis_Utils/blob/master/MybatisGeneator/MybatisGeneator.
- 让程序员少走弯路的14个忠告
jingjing0907
工作计划学习
无论是谁,在刚进入某个领域之时,有再大的雄心壮志也敌不过眼前的迷茫:不知道应该怎么做,不知道应该做什么。下面是一名软件开发人员所学到的经验,希望能对大家有所帮助
1.不要害怕在工作中学习。
只要有电脑,就可以通过电子阅读器阅读报纸和大多数书籍。如果你只是做好自己的本职工作以及分配的任务,那是学不到很多东西的。如果你盲目地要求更多的工作,也是不可能提升自己的。放
- nginx和NetScaler区别
流浪鱼
nginx
NetScaler是一个完整的包含操作系统和应用交付功能的产品,Nginx并不包含操作系统,在处理连接方面,需要依赖于操作系统,所以在并发连接数方面和防DoS攻击方面,Nginx不具备优势。
2.易用性方面差别也比较大。Nginx对管理员的水平要求比较高,参数比较多,不确定性给运营带来隐患。在NetScaler常见的配置如健康检查,HA等,在Nginx上的配置的实现相对复杂。
3.策略灵活度方
- 第11章 动画效果(下)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- FAQ - SAP BW BO roadmap
blueoxygen
BOBW
http://www.sdn.sap.com/irj/boc/business-objects-for-sap-faq
Besides, I care that how to integrate tightly.
By the way, for BW consultants, please just focus on Query Designer which i
- 关于java堆内存溢出的几种情况
tomcat_oracle
javajvmjdkthread
【情况一】:
java.lang.OutOfMemoryError: Java heap space:这种是java堆内存不够,一个原因是真不够,另一个原因是程序中有死循环; 如果是java堆内存不够的话,可以通过调整JVM下面的配置来解决: <jvm-arg>-Xms3062m</jvm-arg> <jvm-arg>-Xmx
- Manifest.permission_group权限组
阿尔萨斯
Permission
结构
继承关系
public static final class Manifest.permission_group extends Object
java.lang.Object
android. Manifest.permission_group 常量
ACCOUNTS 直接通过统计管理器访问管理的统计
COST_MONEY可以用来让用户花钱但不需要通过与他们直接牵涉的权限
D