POJ1456 Supermarket (贪心)

Supermarket
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 12801   Accepted: 5718

Description

A supermarket has a set Prod of products on sale. It earns a profit px for each product x∈Prod sold by a deadline dx that is measured as an integral number of time units starting from the moment the sale begins. Each product takes precisely one unit of time for being sold. A selling schedule is an ordered subset of products Sell ≤ Prod such that the selling of each product x∈Sell, according to the ordering of Sell, completes before the deadline dx or just when dx expires. The profit of the selling schedule is Profit(Sell)=Σ x∈Sellpx. An optimal selling schedule is a schedule with a maximum profit. 
For example, consider the products Prod={a,b,c,d} with (pa,da)=(50,2), (pb,db)=(10,1), (pc,dc)=(20,2), and (pd,dd)=(30,1). The possible selling schedules are listed in table 1. For instance, the schedule Sell={d,a} shows that the selling of product d starts at time 0 and ends at time 1, while the selling of product a starts at time 1 and ends at time 2. Each of these products is sold by its deadline. Sell is the optimal schedule and its profit is 80. 

Write a program that reads sets of products from an input text file and computes the profit of an optimal selling schedule for each set of products. 

Input

A set of products starts with an integer 0 <= n <= 10000, which is the number of products in the set, and continues with n pairs pi di of integers, 1 <= pi <= 10000 and 1 <= di <= 10000, that designate the profit and the selling deadline of the i-th product. White spaces can occur freely in input. Input data terminate with an end of file and are guaranteed correct.

Output

For each set of products, the program prints on the standard output the profit of an optimal selling schedule for the set. Each result is printed from the beginning of a separate line.

Sample Input

4  50 2  10 1   20 2   30 1

7  20 1   2 1   10 3  100 2   8 2
   5 20  50 10

Sample Output

80
185

Hint

The sample input contains two product sets. The first set encodes the products from table 1. The second set is for 7 products. The profit of an optimal schedule for these products is 185.


题目大意:
有N件商品,分别给出商品的价值和销售的最后期限,只要在最后日期之前销售出,就能得到相应的利润,并且销售该商品需要1天时间。
问销售的最大利润。
解题思路:
贪心思想,将商品的价值从大到小排序,找到销售的最大期限,用vis数组标记,如果它的期限没有被占用,就在该天销售,如果占用,则从它的前一天开始向前查找有没有空闲的日期,如果有则占用。这样就可以得到最大销售量。


#include 
#include 
#include 
#define ll long long
#define PI acos(-1)
#define M(n, m) memset(n, m, sizeof(n));
const int INF = 1e9 + 7;
const int maxn = 1e5;
using namespace std;

struct data
{
    int value;
    int _count;
} a[maxn];
bool vis[maxn];
int n;

bool comp(const data &a, const data &b)
{
    return a.value > b.value;
}

int main()
{
    while(~scanf("%d", &n))
    {
        M(vis, 0)
        for (int i = 0; i < n; i ++)
            scanf("%d%d", &a[i].value, &a[i]._count);
        sort(a, a + n, comp);
        int sum = 0;
        for (int i = 0; i < n; i ++)
        {
            for (int j = a[i]._count; j >= 1; j --)
                if (!vis[j])
                {
                    sum += a[i].value;
                    vis[j] = 1;
                    break;
                }
        }
        printf("%d\n", sum);
    }
    return 0;
}



你可能感兴趣的:(ACM后续)