sklearn中digits手写字体数据集

1. 导入

from sklearn import datasets
digits = datasets.load_digits()

2. 属性查看

  • digits: bunch类型
print(digits.keys())

dict_keys(['data', 'target', 'target_names', 'images', 'DESCR'])

3. 具体数据

  • 1797个样本,每个样本包括8*8像素的图像和一个[0, 9]整数的标签

3.1 images

  • ndarray类型,保存8*8的图像,里面的元素是float64类型,共有1797张图片
  • 用于显示图片
  • import matplotlib.pyplot as plt
    plt.imshow(digits.images[0])
                          
    plt.show()
  •  

 

# 获取第一张图片
print(digits.images[0])
[[  0.   0.   5.  13.   9.   1.   0.   0.]
 [  0.   0.  13.  15.  10.  15.   5.   0.]
 [  0.   3.  15.   2.   0.  11.   8.   0.]
 [  0.   4.  12.   0.   0.   8.   8.   0.]
 [  0.   5.   8.   0.   0.   9.   8.   0.]
 [  0.   4.  11.   0.   1.  12.   7.   0.]
 [  0.   2.  14.   5.  10.  12.   0.   0.]
 [  0.   0.   6.  13.  10.   0.   0.   0.]]
  • sklearn中digits手写字体数据集_第1张图片

  • 或者

  • from skimage import io
    im=plt.imshow(digits.images[0])
    print(type(im))
                  
    io.show()

    sklearn中digits手写字体数据集_第2张图片

 

3.2 data

  • ndarray类型,将images按行展开成一行,共有1797行
  • 输入数据
  • print(digits.data[0])
    [  0.   0.   5.  13.   9.   1.   0.   0.   0.   0.  13.  15.  10.  15.   5.
       0.   0.   3.  15.   2.   0.  11.   8.   0.   0.   4.  12.   0.   0.   8.
       8.   0.   0.   5.   8.   0.   0.   9.   8.   0.   0.   4.  11.   0.   1.
      12.   7.   0.   0.   2.  14.   5.  10.  12.   0.   0.   0.   0.   6.  13.
      10.   0.   0.   0.]

3.3 target

  • ndarray类型,指明每张图片的标签,也就是每张图片代表的数字
  • 输出数据,标签
  • print(digits.target[0])
    
    0

    3.4 target_names

  • ndarray类型,数据集中所有标签值
  • print(digits.target_names)
    [0 1 2 3 4 5 6 7 8 9]

    3.5 DESCR

  • 数据集的描述,作者,数据来源等
  • print(digits.DESCR)
    .. _digits_dataset:
    
    Optical recognition of handwritten digits dataset
    --------------------------------------------------
    
    **Data Set Characteristics:**
    
        :Number of Instances: 5620
        :Number of Attributes: 64
        :Attribute Information: 8x8 image of integer pixels in the range 0..16.
        :Missing Attribute Values: None
        :Creator: E. Alpaydin (alpaydin '@' boun.edu.tr)
        :Date: July; 1998
    
    This is a copy of the test set of the UCI ML hand-written digits datasets
    http://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
    
    The data set contains images of hand-written digits: 10 classes where
    each class refers to a digit.
    
    Preprocessing programs made available by NIST were used to extract
    normalized bitmaps of handwritten digits from a preprinted form. From a
    total of 43 people, 30 contributed to the training set and different 13
    to the test set. 32x32 bitmaps are divided into nonoverlapping blocks of
    4x4 and the number of on pixels are counted in each block. This generates
    an input matrix of 8x8 where each element is an integer in the range
    0..16. This reduces dimensionality and gives invariance to small
    distortions.
    
    For info on NIST preprocessing routines, see M. D. Garris, J. L. Blue, G.
    T. Candela, D. L. Dimmick, J. Geist, P. J. Grother, S. A. Janet, and C.
    L. Wilson, NIST Form-Based Handprint Recognition System, NISTIR 5469,
    1994.
    
    .. topic:: References
    
      - C. Kaynak (1995) Methods of Combining Multiple Classifiers and Their
        Applications to Handwritten Digit Recognition, MSc Thesis, Institute of
        Graduate Studies in Science and Engineering, Bogazici University.
      - E. Alpaydin, C. Kaynak (1998) Cascading Classifiers, Kybernetika.
      - Ken Tang and Ponnuthurai N. Suganthan and Xi Yao and A. Kai Qin.
        Linear dimensionalityreduction using relevance weighted LDA. School of
        Electrical and Electronic Engineering Nanyang Technological University.
        2005.
      - Claudio Gentile. A New Approximate Maximal Margin Classification
        Algorithm. NIPS. 2000.


                        
        
         
            
                            
                    
     

 

 

 

 

 

 

 

你可能感兴趣的:(sklearn中digits手写字体数据集)