有长度为 n 的数组 a ,全为 0,接下来循环 n 次,每次选出一段最长的连续区间 [l, r](全为 0 ,如果一样长,就选最左边的)。
如果 r−l+1 是奇数,那么 a [ l + r 2 ] = i a[\frac{l+r}{2}]=i a[2l+r]=i;
否则, a [ l + r − 1 2 ] = i a[\frac{l+r-1}{2}]=i a[2l+r−1]=i;(i 是第几轮循环)。
输出最终的数组 a。
You are given an array a of length n consisting of zeros. You perform n actions with this array: during the i-th action, the following sequence of operations appears:
Choose the maximum by length subarray (continuous subsegment) consisting only of zeros, among all such segments choose the leftmost one;
Let this segment be [l;r]. If r−l+1 is odd (not divisible by 2) then assign (set) a [ l + r 2 ] = i a[\frac{l+r}{2}]=i a[2l+r]=i(where i is the number of the current action), otherwise (if r−l+1 is even) assign (set) a [ l + r − 1 2 ] = i a[\frac{l+r-1}{2}]=i a[2l+r−1]=i.
Consider the array a of length 5 (initially a=[0,0,0,0,0]). Then it changes as follows:
Firstly, we choose the segment [1;5] and assign a[3]:=1, so a becomes [0,0,1,0,0];
then we choose the segment [1;2] and assign a[1]:=2, so a becomes [2,0,1,0,0];
then we choose the segment [4;5] and assign a[4]:=3, so a becomes [2,0,1,3,0];
then we choose the segment [2;2] and assign a[2]:=4, so a becomes [2,4,1,3,0];
and at last we choose the segment [5;5] and assign a[5]:=5, so a becomes [2,4,1,3,5].
Your task is to find the array a of length n after performing all n actions. Note that the answer exists and unique.
You have to answer t independent test cases.
Input
The first line of the input contains one integer t (1≤t≤104) — the number of test cases. Then t test cases follow.
The only line of the test case contains one integer n (1≤n≤2⋅105) — the length of a.
It is guaranteed that the sum of n over all test cases does not exceed 2⋅105 (∑n≤2⋅105).
Output
For each test case, print the answer — the array a of length n after performing n actions described in the problem statement. Note that the answer exists and unique.
Example
Input
6
1
2
3
4
5
6
Output
1
1 2
2 1 3
3 1 2 4
2 4 1 3 5
3 4 1 5 2 6
我们可以直接暴力去做。即我们每次选出符合条件的 [l, r],然后对应的给 a[i] 赋值,又得到了两个新的更小的区间,我们需要存储下来,并按照上述的规则对所有的区间排序。显然优先队列可以完美的满足我们的要求。优先队列的BFS。每次处理完一段区间后就把这段区间拆分,丢进优先队列里就好。注意priority_queue本身是一个大根二叉堆,所以重载运算符时符号要反一下
(或者按照蓝书讲的 把len换成相反数)。
#AC代码:
#include
using namespace std;
typedef long long ll;
const int M=2e5+10;
int s[M];
int t,n,tot;
struct node
{
int l,r,d;
};
bool operator<(const node &a,const node &b)
{
if(a.d<b.d)
return 1;
else if(a.d==b.d)
if(a.l>b.l)
return 1;
return 0;
}
int main()
{
scanf("%d",&t);
while(t--)
{
tot=0;
memset(s,0,sizeof(s));
scanf("%d",&n);
priority_queue<node>q;
node u,v;
u.l=1,u.r=n,u.d=u.r-u.l+1;
q.push(u);
while(!q.empty())
{
u=q.top();
q.pop();
int x=u.l;
int y=u.r;
int mid=(x+y)>>1;
s[mid]=++tot;
//printf("%d****\n",s[mid]);
v.l=x,v.r=mid-1,v.d=v.r-v.l+1;
if(v.l<=v.r)
q.push(v);
v.l=mid+1,v.r=y,v.d=v.r-v.l+1;
if(v.l<=v.r)
q.push(v);
}
for(int i=1;i<=n;i++)
printf("%d ",s[i]);
printf("\n");
}
return 0;
}