- 模糊逻辑:自然模糊性的数学处理
AI天才研究院
计算ChatGPTAI人工智能与大数据javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
模糊逻辑:自然模糊性的数学处理关键词:模糊逻辑、模糊集合、模糊控制器、模糊神经网络、模式识别、决策支持系统摘要:本文深入探讨了模糊逻辑这一数学工具,旨在揭示其在处理自然模糊性方面的独特优势。通过对模糊逻辑基础、应用和高级主题的详细分析,本文展示了模糊逻辑在多个领域的实际应用,包括模糊控制器、模糊神经网络、模式识别和决策支持系统等。文章结构清晰,便于读者逐步深入理解和掌握这一重要技术。目录大纲:第一
- 基于Python的气象数据分析及可视化研究
气象数据作为地球系统科学的核心要素,其分析与可视化在气候研究、灾害预警、农业生产等领域具有战略性意义。本文以Python技术栈为基座,系统探讨气象数据的采集预处理、多维度分析模型及可视化表达范式,通过3000+字深度研究揭示Pandas时序处理、Xarray多维计算、Cartopy地理可视化等工具的核心方法论。内容涵盖全球再分析数据挖掘、极端天气模式识别、动态热力图构建等实战场景,并引入机器学习预
- 量子算法:微算法科技用于定位未知哈希图的量子算法,网络安全中的哈希映射突破
MicroTech2025
量子计算哈希算法
近年来,量子计算的飞速发展使其成为各个领域的变革力量。特别是在网络安全领域,量子算法展示了加速并增强威胁检测(如恶意软件识别)方法的巨大潜力。微算法科技(NASDAQ:MLGO)用于定位未知哈希图的量子算法,是针对未知哈希图定位而设计的量子算法。这项技术可能会彻底改变在数据处理中利用哈希值的方式,特别是在恶意软件模式识别中。传统网络安全框架通常依赖哈希函数来生成不同数据结构的唯一标识符,或称之为“
- IDS检测原理和架构
hao_wujing
安全
大家读完觉得有帮助记得关注和点赞!!!IDS(入侵检测系统)的核心使命是**从海量网络/主机行为中精准识别攻击企图**,其技术本质是**异常行为模式识别引擎**。以下从检测原理、系统架构到技术演进进行深度解析:---###⚙️IDS核心检测原理####1.**双引擎协同机制**|**检测类型**|**原理**|**优势/局限**|**典型算法**||--------------------|---
- AI人工智能 神经网络
马里亚纳海沟网
人工智能神经网络深度学习笔记运维全文检索搜索引擎
**AI人工智能神经网络概述**神经网络是并行计算设备,它们试图构建大脑的计算机模型。背后的主要目标是开发一个系统来执行各种计算任务比传统系统更快。这些任务包括模式识别和分类,近似,优化和数据聚类什么是人工神经网络(ANN)人工神经网络(ANN)是一个高效的计算系统,其核心主题是借用生物神经网络的类比。人工神经网络也被称为人工神经系统,并行分布式处理系统和连接系统。ANN获取了大量以某种模式相互连
- AI表格数据分析
简单发一篇文章,最近看到AI数据分析是越来越火了哈,把简单的流程进行一次简要的分享。AI数据分析的本质,是“结构化数据→模式识别→可视化表达+洞察输出”。1、分析流程详解:(1)数据预处理什么是数据预处理呢?其实它可以理解成你给的是什么。步骤1:识别数据结构表头,字段的含义等。步骤2:清洗数据去除空值、格式错误、重复数据。步骤3:类型识别判断哪些是时间字段?哪些是数值型?哪些是分类字段?总结:类似
- 基于OpenCv的图片倾斜校正系统详细设计与具体代码实现
AI大模型应用之禅
人工智能数学基础计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
基于OpenCv的图片倾斜校正系统详细设计与具体代码实现1.背景介绍1.1图像处理的重要性在当今数字时代,图像处理技术在各个领域都扮演着重要角色。无论是在计算机视觉、模式识别、医学影像、遥感探测还是多媒体处理等领域,图像处理都是不可或缺的核心技术。通过对图像进行预处理、增强、分割、特征提取等操作,可以从图像中获取有价值的信息,为后续的分析和决策提供支持。1.2图像倾斜问题及其影响在实际应用中,由于
- 【EI/Scopus检索|2025光学、图像、遥感与通信融合创新大会】7月光学工程、信号处理、模式识别、遥感测绘、光学与通信技术领域国际研讨会来袭!
努力毕业的小土博^_^
学术会议推荐信号处理机器学习神经网络人工智能
【EI/Scopus检索|2025光学、图像、遥感与通信融合创新大会】7月光学工程、信号处理、模式识别、遥感测绘、光学与通信技术领域国际研讨会来袭!【EI/Scopus检索|2025光学、图像、遥感与通信融合创新大会】7月光学工程、信号处理、模式识别、遥感测绘、光学与通信技术领域国际研讨会来袭!文章目录【EI/Scopus检索|2025光学、图像、遥感与通信融合创新大会】7月光学工程、信号处理、模
- MySQL用户留存与流失分析
Mr数据杨
全栈数据仓库mysql数据库
用户留存和流失分析是数据分析中至关重要的部分,尤其在快速发展的互联网产品和应用中,用户生命周期的变化直接关系到产品的成长与盈利。通过分析用户留存率和流失率,产品管理人员可以准确判断用户在产品使用过程中的行为倾向,从而优化用户体验、增加用户黏性、并提高商业转化率。本文将从用户生命周期的概念出发,探讨如何在MySQL中进行留存与流失的详细分析,包括流失用户的行为模式识别与预警、以及通过用户分层来设计个
- KNN算法数字识别实战:训练集、测试集与代码实现
Aurora曙光
本文还有配套的精品资源,点击获取简介:KNN算法,作为一种经典的监督学习方法,特别适用于分类和回归问题,在模式识别和数据挖掘中应用广泛。本文通过构建数字识别任务的训练集和测试集,并提供完整的代码实现,向读者展示如何使用KNN算法进行数字识别。文章详细解释了K值选择、数据预处理、距离计算、最近邻选择、类别决定以及模型评估等关键步骤,并强调了KNN在大数据集中的效率问题。1.KNN算法概述与在数字识别
- 用excel构建神经网络,excel神经网络实现
快乐的小荣荣
神经网络人工智能深度学习
NeuroSolutionsforExcel这个功能可以实现多种神经网络嘛?。神经网络是一种能适应新环境的系统,它针对过去经验(信息)的重覆学习,而具有分析、预测、推理、分类等能力,是当今能够仿效人类大脑去解决复杂问题的系统,比起常规的系统(使用统计方法、模式识别、分类、线性或非线性方法)而言,以神经网络为基础的系统具有更强大的功能和分析问题技巧,可以用来解决信号处理、仿真预测、分析决策等复杂的问
- MATLAB实现基于基元共生矩阵的纹理特征提取方法
杏花朵朵
本文还有配套的精品资源,点击获取简介:纹理特征提取在图像处理中对于模式识别和分类等应用至关重要。本文将详细介绍如何在MATLAB中使用基元共生矩阵(PCM)来提取图像的纹理特征。基元共生矩阵通过统计像素对在特定距离和方向上的相对位置关系来描述纹理的局部结构。本方法首先定义不同的方格和方向,然后计算共生矩阵,并从中提取出对比度、能量、熵、相关性等统计特征。最后,这些统计特征被组合成特征向量,用于图像
- AI学习指南高数篇-泛函分析
俞兆鹏
AI学习指南ai
AI学习指南高数篇-泛函分析概述在数学领域中,泛函分析是研究无限维向量空间及其内涵结构的分支学科。泛函分析通过研究向量空间内的连续线性泛函,解决了无限维空间上函数序列的极限性质以及函数空间的拓扑性质等问题。泛函分析在AI中的使用场景泛函分析在人工智能领域中发挥着重要作用,特别是在机器学习和深度学习领域。通过泛函分析的方法,AI系统可以更好地处理高维数据,从而更准确地进行模式识别、数据建模和预测分析
- (详细介绍)什么是 Spherical Gaussian(球形高斯分布)
音程
数学数学
文章目录什么是SphericalGaussian?几何意义:为什么叫“球形”?特点总结:应用场景举例:✅示例代码(Python)相关概念对比:SphericalGaussian(球形高斯分布)是概率论与统计学中一个非常常见且重要的概念,尤其在机器学习、信号处理、模式识别等领域有广泛应用。什么是SphericalGaussian?SphericalGaussianDistribution(球形高斯分
- 【人工智能机器学习基础篇】——深入详解无监督学习之聚类,理解K-Means、层次聚类、数据分组和分类
猿享天开
人工智能数学基础专讲机器学习人工智能无监督学习聚类
深入详解无监督学习之聚类:如K-Means、层次聚类,理解数据分组和分类无监督学习是机器学习中的一个重要分支,旨在从未标注的数据中发现潜在的结构和模式。聚类(Clustering)作为无监督学习的核心任务之一,广泛应用于数据分组、模式识别和数据压缩等领域。本文将深入探讨两种常用的聚类算法:K-Means聚类和层次聚类,并详细解释它们在数据分组和分类中的应用。目录深入详解无监督学习之聚类:如K-Me
- 数据挖掘在大数据领域的重要性及价值
AI天才研究院
计算AIAgent应用开发数据挖掘大数据人工智能ai
数据挖掘在大数据领域的重要性及价值关键词:数据挖掘、大数据分析、机器学习、商业智能、数据预处理、预测分析、数据价值提取摘要:本文系统解析数据挖掘在大数据时代的核心地位,通过技术原理、算法实现、行业应用等维度,揭示其如何从海量数据中萃取有效信息。结合CRISP-DM方法论、典型算法案例及实战项目,阐述数据挖掘在数据预处理、模式识别、预测建模等关键环节的技术价值,同时分析金融、医疗、电商等行业的落地场
- AiPy:当AI从“能想”迈向“能做”,代码即代理的时代已来
python人工智能
人工智能的飞速发展,正将我们带入一个全新的时代。从早期专注于数据分析和模式识别的“能想”阶段,AI如今已大步迈向能够自主执行复杂任务的“能做”阶段。在这个过程中,各种AIAgent(智能体)层出不穷,它们被赋予了感知、决策和行动的能力,旨在自动化我们的工作和生活。然而,在众多智能体范式中,为何“Code即代理”(CodeasAgent)的理念值得我们特别关注?本文将深入探讨这一范式,并以AiPy为
- 提升社保服务效率-社保卡识别接口-社保ocr api
在数字化快速发展的背景下,越来越多的企业和政务系统开始采用智能化技术以提升办公效率。社保卡作为个人社会保障权益的重要载体,其信息的高效识别与处理对于提升社保服务质量、优化业务流程至关重要。社保卡识别接口应运而生,它如同一位智能助手,开启了便捷社保服务的新时代。社保卡识别接口主要基于ocr技术,融合图像处理、模式识别、深度学习等技术高效提取并结构化呈现社保卡上的核心信息,包括但不限于持卡人姓名、社会
- 农产品产量智能预测(聚类实际落地场景)
数字化与智能化
机器学习场景落地-智慧农业聚类机器学习
聚类算法在农产品产量智能预测中可通过对多维度数据的分类与模式识别,为产量预测提供更精准的分析基础,其应用场景主要涉及数据预处理、影响因素分析、产量区域划分等多个关键环节,以下是具体介绍:1、数据预处理与特征提取【1】数据清洗与分类农产品产量相关数据(如气象数据、土壤指标、历史产量等)常存在噪声或缺失值,聚类算法可对同类数据进行聚合,识别异常数据点,提升数据质量。例如:利用K-means算法对不同年
- 深度学习入门:Python搭建简单神经网络模型
缑宇澄
python
在人工智能浪潮中,深度学习凭借强大的特征提取与模式识别能力成为核心技术,而神经网络则是深度学习的基石。从图像识别到自然语言处理,神经网络以独特的结构和学习机制,让计算机能够模拟人类大脑处理复杂信息的过程。本文将带领你从基础理论出发,使用Python和Keras库搭建一个简单的神经网络模型,开启深度学习的探索之旅。一、神经网络基础理论1.1神经元与网络结构神经网络的基本单元是人工神经元(又称节点或单
- 【MATLAB源码】机器视觉与图像识别技术(4)---模式识别与视觉计数
§ꦿCFོ༉
机器视觉与图像识别技术计算机视觉算法人工智能图像处理matlab深度学习
系列文章目录第一篇文章:【MATLAB源码】机器视觉与图像识别技术—视觉系统的构成(视频与图像格式转换代码及软件下载)第二篇文章:【MATLAB源码】机器视觉与图像识别技术(2)—图像分割基础第三篇文章:【MATLAB源码】机器视觉与图像识别技术(2)续—图像分割算法第四篇文章:【MATLAB源码】机器视觉与图像识别技术(3)—数字形态学处理以及图像特征点提取模式识别与视觉计数
- 构筑多元视角下的智能安全能力提升之道
芯盾时代
安全网络人工智能网络安全
面对日益专业化、隐蔽化的网络攻击,传统安全防御能力在实时性、精准性和可持续性层面遭遇严峻挑战。人工智能技术通过其强大的数据解析力、模式识别力与决策自动化能力,正在重塑网络安全能力的价值,推动安全体系完成从“被动响应”到“主动免疫”的根本性变革。在威胁检测方面,人工智能通过无监督学习构建动态基线模型,实时解析网络流量、终端行为及用户操作日志,突破传统特征库对已知威胁的依赖。基于深度神经网络的异常检测
- 【动手学机器学习】第三章模式识别与机器学习经典算法——k 近邻算法
小洛~·~
算法机器学习近邻算法python人工智能
前言本章先来讲解k近邻算法——最简单的机器学习算法,从中展开机器学习的一些基本概念和思想。或许有的读者会认为机器学习非常困难,需要庞大的模型、复杂的网络,但事实并非如此。相当多的机器学习算法都非常简单、直观,也不涉及神经网络。本章就将介绍一个最基本的分类和回归算法:k近邻(k-nearestneighbor,KNN)算法。KNN是最简单也是最重要的机器学习算法之一,它的思想可以用一句话来概括:“相
- 国科大模式识别部分总结资源介绍:助你掌握核心知识,提升学术能力
强姣晴Keely
国科大模式识别部分总结资源介绍:助你掌握核心知识,提升学术能力【下载地址】国科大模式识别部分总结资源介绍《国科大模式识别部分总结》是一份精心整理的课程学习资源,涵盖了模式识别课程的前四章核心内容。从绪论到特征提取与选择,再到监督学习和无监督学习算法,文档结构清晰,知识点详实,是期末复习和深入学习的理想选择。适合与课堂笔记和教材结合使用,帮助读者全面掌握模式识别的理论与应用。本资源仅供学习研究使用,
- 我们掌握的技能与进入企业的机会
万能小贤哥
人工智能算法深度学习
深度学习:从基础到实践一、引言深度学习是机器学习的一个分支,它通过构建多层神经网络来模拟人类大脑的信息处理方式,从而实现对复杂数据的自动特征提取和模式识别。近年来,深度学习在计算机视觉、自然语言处理、语音识别等领域取得了巨大的突破,引发了全球范围内的研究和应用热潮。本文将从深度学习的基本概念出发,逐步深入到实际应用,并结合代码示例展示如何实现一个简单的深度学习模型。二、深度学习基础(一)神经网络的
- 吴恩达深度学习课程实践项目集
Kiki-2189
本文还有配套的精品资源,点击获取简介:吴恩达深度学习编程作业包含了Coursera平台课程中的实践环节,为学员提供深度学习理论与编程技能的巩固。这些作业从基础神经网络到复杂架构,涵盖深度学习的各种关键概念和技术,使用TensorFlow进行模型构建和训练,适合作为入门深度学习的资源。1.深度学习基础与理论框架在当今的人工智能领域,深度学习以其强大的模式识别能力,已经成为了众多技术革新的核心。本章将
- 基于K-means聚类算法的图像分割
挂科边缘
MATLAB项目实战kmeans聚类计算机视觉matlab
文章目录前言一、理论基础1.K-means聚类算法的原理2.K-means聚类算法的要点3.K-means聚类算法的缺点4.基于K-means聚类算法进行图像分割二、程序实现1.样本间的距离2.提取特征向量3.图像聚类分割总结源码下载前言图像分割就是把图像分成各具特性的区域并提取人们感兴趣的目标的技术和过程,是目标检测和模式识别的基础。现有的图像分割方法主要有基于阈值的分割方法、基于区域的分割方法
- 单目视觉测量及双目视觉测量
摆烂仙君
人工智能计算机视觉深度学习
一、单目视觉测量1.1原理部分讲解单目视觉系统通过采集图像,将图像转换为二维数据,然后对采集的图像进行模式识别,通过图像匹配算法识别行驶过程中的车辆、行人、交通标志等,最后依据目标物体的运动模式和定位技术,估算目标物体与本车的相对距离和相对速度。单目相机测距常用或者说实用的方法就是相似三角形法。这种方法假设我们有一个宽度为W的目标或者物体,然后我们将这个目标放在距离我们的相机为D的位置。我们用相机
- 医工交叉论坛 | 智能医疗数据分析与应用 IEEE PRMVAI Workshop 20
诗远小佳
学术会议EI检索医工交叉科研交流
2025年IEEE第三届模式识别、机器视觉和人工智能国际会议下的Workshop20——“IntelligentHealthcareDataAnalysisandApplications”,简直是医工交叉领域的宝藏活动!时间:2025年6月20-22日地点:湖南娄底超强师资阵容赵庆玲:来自南京理工大学,在医疗数据相关研究上经验丰富。朱旗:南京航空航天大学的专家,深入探索医工融合技术。秦者云:山东大
- IEEE PRMVAI 2025 IEEE PRMVAI 探索人工智能在基础设施建设应用与运维中的新挑战
诗远小佳
人工智能运维学术投稿EI会议科研交流
科研小伙伴们,注意啦!2025年6月20-22日,在美丽的湖南娄底,即将拉开2025年IEEE第三届模式识别、机器视觉和人工智能国际会议的大幕它可是具备EI&Scopus双检索属性,含金量超高,绝对是学术生涯中值得打卡的重要一站!Workshop13深度探秘本次会议的Workshop13堪称宝藏环节,主题为“数据驱动与人工智能技术在基础设施建设及运维中的挑战与应用”✨想象一下,在基础设施建设中,数
- java线程Thread和Runnable区别和联系
zx_code
javajvmthread多线程Runnable
我们都晓得java实现线程2种方式,一个是继承Thread,另一个是实现Runnable。
模拟窗口买票,第一例子继承thread,代码如下
package thread;
public class ThreadTest {
public static void main(String[] args) {
Thread1 t1 = new Thread1(
- 【转】JSON与XML的区别比较
丁_新
jsonxml
1.定义介绍
(1).XML定义
扩展标记语言 (Extensible Markup Language, XML) ,用于标记电子文件使其具有结构性的标记语言,可以用来标记数据、定义数据类型,是一种允许用户对自己的标记语言进行定义的源语言。 XML使用DTD(document type definition)文档类型定义来组织数据;格式统一,跨平台和语言,早已成为业界公认的标准。
XML是标
- c++ 实现五种基础的排序算法
CrazyMizzz
C++c算法
#include<iostream>
using namespace std;
//辅助函数,交换两数之值
template<class T>
void mySwap(T &x, T &y){
T temp = x;
x = y;
y = temp;
}
const int size = 10;
//一、用直接插入排
- 我的软件
麦田的设计者
我的软件音乐类娱乐放松
这是我写的一款app软件,耗时三个月,是一个根据央视节目开门大吉改变的,提供音调,猜歌曲名。1、手机拥有者在android手机市场下载本APP,同意权限,安装到手机上。2、游客初次进入时会有引导页面提醒用户注册。(同时软件自动播放背景音乐)。3、用户登录到主页后,会有五个模块。a、点击不胫而走,用户得到开门大吉首页部分新闻,点击进入有新闻详情。b、
- linux awk命令详解
被触发
linux awk
awk是行处理器: 相比较屏幕处理的优点,在处理庞大文件时不会出现内存溢出或是处理缓慢的问题,通常用来格式化文本信息
awk处理过程: 依次对每一行进行处理,然后输出
awk命令形式:
awk [-F|-f|-v] ‘BEGIN{} //{command1; command2} END{}’ file
[-F|-f|-v]大参数,-F指定分隔符,-f调用脚本,-v定义变量 var=val
- 各种语言比较
_wy_
编程语言
Java Ruby PHP 擅长领域
- oracle 中数据类型为clob的编辑
知了ing
oracle clob
public void updateKpiStatus(String kpiStatus,String taskId){
Connection dbc=null;
Statement stmt=null;
PreparedStatement ps=null;
try {
dbc = new DBConn().getNewConnection();
//stmt = db
- 分布式服务框架 Zookeeper -- 管理分布式环境中的数据
矮蛋蛋
zookeeper
原文地址:
http://www.ibm.com/developerworks/cn/opensource/os-cn-zookeeper/
安装和配置详解
本文介绍的 Zookeeper 是以 3.2.2 这个稳定版本为基础,最新的版本可以通过官网 http://hadoop.apache.org/zookeeper/来获取,Zookeeper 的安装非常简单,下面将从单机模式和集群模式两
- tomcat数据源
alafqq
tomcat
数据库
JNDI(Java Naming and Directory Interface,Java命名和目录接口)是一组在Java应用中访问命名和目录服务的API。
没有使用JNDI时我用要这样连接数据库:
03. Class.forName("com.mysql.jdbc.Driver");
04. conn
- 遍历的方法
百合不是茶
遍历
遍历
在java的泛
- linux查看硬件信息的命令
bijian1013
linux
linux查看硬件信息的命令
一.查看CPU:
cat /proc/cpuinfo
二.查看内存:
free
三.查看硬盘:
df
linux下查看硬件信息
1、lspci 列出所有PCI 设备;
lspci - list all PCI devices:列出机器中的PCI设备(声卡、显卡、Modem、网卡、USB、主板集成设备也能
- java常见的ClassNotFoundException
bijian1013
java
1.java.lang.ClassNotFoundException: org.apache.commons.logging.LogFactory 添加包common-logging.jar2.java.lang.ClassNotFoundException: javax.transaction.Synchronization
- 【Gson五】日期对象的序列化和反序列化
bit1129
反序列化
对日期类型的数据进行序列化和反序列化时,需要考虑如下问题:
1. 序列化时,Date对象序列化的字符串日期格式如何
2. 反序列化时,把日期字符串序列化为Date对象,也需要考虑日期格式问题
3. Date A -> str -> Date B,A和B对象是否equals
默认序列化和反序列化
import com
- 【Spark八十六】Spark Streaming之DStream vs. InputDStream
bit1129
Stream
1. DStream的类说明文档:
/**
* A Discretized Stream (DStream), the basic abstraction in Spark Streaming, is a continuous
* sequence of RDDs (of the same type) representing a continuous st
- 通过nginx获取header信息
ronin47
nginx header
1. 提取整个的Cookies内容到一个变量,然后可以在需要时引用,比如记录到日志里面,
if ( $http_cookie ~* "(.*)$") {
set $all_cookie $1;
}
变量$all_cookie就获得了cookie的值,可以用于运算了
- java-65.输入数字n,按顺序输出从1最大的n位10进制数。比如输入3,则输出1、2、3一直到最大的3位数即999
bylijinnan
java
参考了网上的http://blog.csdn.net/peasking_dd/article/details/6342984
写了个java版的:
public class Print_1_To_NDigit {
/**
* Q65.输入数字n,按顺序输出从1最大的n位10进制数。比如输入3,则输出1、2、3一直到最大的3位数即999
* 1.使用字符串
- Netty源码学习-ReplayingDecoder
bylijinnan
javanetty
ReplayingDecoder是FrameDecoder的子类,不熟悉FrameDecoder的,可以先看看
http://bylijinnan.iteye.com/blog/1982618
API说,ReplayingDecoder简化了操作,比如:
FrameDecoder在decode时,需要判断数据是否接收完全:
public class IntegerH
- js特殊字符过滤
cngolon
js特殊字符js特殊字符过滤
1.js中用正则表达式 过滤特殊字符, 校验所有输入域是否含有特殊符号function stripscript(s) { var pattern = new RegExp("[`~!@#$^&*()=|{}':;',\\[\\].<>/?~!@#¥……&*()——|{}【】‘;:”“'。,、?]"
- hibernate使用sql查询
ctrain
Hibernate
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import org.hibernate.Hibernate;
import org.hibernate.SQLQuery;
import org.hibernate.Session;
import org.hibernate.Transa
- linux shell脚本中切换用户执行命令方法
daizj
linuxshell命令切换用户
经常在写shell脚本时,会碰到要以另外一个用户来执行相关命令,其方法简单记下:
1、执行单个命令:su - user -c "command"
如:下面命令是以test用户在/data目录下创建test123目录
[root@slave19 /data]# su - test -c "mkdir /data/test123" 
- 好的代码里只要一个 return 语句
dcj3sjt126com
return
别再这样写了:public boolean foo() { if (true) { return true; } else { return false;
- Android动画效果学习
dcj3sjt126com
android
1、透明动画效果
方法一:代码实现
public View onCreateView(LayoutInflater inflater, ViewGroup container, Bundle savedInstanceState)
{
View rootView = inflater.inflate(R.layout.fragment_main, container, fals
- linux复习笔记之bash shell (4)管道命令
eksliang
linux管道命令汇总linux管道命令linux常用管道命令
转载请出自出处:
http://eksliang.iteye.com/blog/2105461
bash命令执行的完毕以后,通常这个命令都会有返回结果,怎么对这个返回的结果做一些操作呢?那就得用管道命令‘|’。
上面那段话,简单说了下管道命令的作用,那什么事管道命令呢?
答:非常的经典的一句话,记住了,何为管
- Android系统中自定义按键的短按、双击、长按事件
gqdy365
android
在项目中碰到这样的问题:
由于系统中的按键在底层做了重新定义或者新增了按键,此时需要在APP层对按键事件(keyevent)做分解处理,模拟Android系统做法,把keyevent分解成:
1、单击事件:就是普通key的单击;
2、双击事件:500ms内同一按键单击两次;
3、长按事件:同一按键长按超过1000ms(系统中长按事件为500ms);
4、组合按键:两个以上按键同时按住;
- asp.net获取站点根目录下子目录的名称
hvt
.netC#asp.nethovertreeWeb Forms
使用Visual Studio建立一个.aspx文件(Web Forms),例如hovertree.aspx,在页面上加入一个ListBox代码如下:
<asp:ListBox runat="server" ID="lbKeleyiFolder" />
那么在页面上显示根目录子文件夹的代码如下:
string[] m_sub
- Eclipse程序员要掌握的常用快捷键
justjavac
javaeclipse快捷键ide
判断一个人的编程水平,就看他用键盘多,还是鼠标多。用键盘一是为了输入代码(当然了,也包括注释),再有就是熟练使用快捷键。 曾有人在豆瓣评
《卓有成效的程序员》:“人有多大懒,才有多大闲”。之前我整理了一个
程序员图书列表,目的也就是通过读书,让程序员变懒。 写道 程序员作为特殊的群体,有的人可以这么懒,懒到事情都交给机器去做,而有的人又可
- c++编程随记
lx.asymmetric
C++笔记
为了字体更好看,改变了格式……
&&运算符:
#include<iostream>
using namespace std;
int main(){
int a=-1,b=4,k;
k=(++a<0)&&!(b--
- linux标准IO缓冲机制研究
音频数据
linux
一、什么是缓存I/O(Buffered I/O)缓存I/O又被称作标准I/O,大多数文件系统默认I/O操作都是缓存I/O。在Linux的缓存I/O机制中,操作系统会将I/O的数据缓存在文件系统的页缓存(page cache)中,也就是说,数据会先被拷贝到操作系统内核的缓冲区中,然后才会从操作系统内核的缓冲区拷贝到应用程序的地址空间。1.缓存I/O有以下优点:A.缓存I/O使用了操作系统内核缓冲区,
- 随想 生活
暗黑小菠萝
生活
其实账户之前就申请了,但是决定要自己更新一些东西看也是最近。从毕业到现在已经一年了。没有进步是假的,但是有多大的进步可能只有我自己知道。
毕业的时候班里12个女生,真正最后做到软件开发的只要两个包括我,PS:我不是说测试不好。当时因为考研完全放弃找工作,考研失败,我想这只是我的借口。那个时候才想到为什么大学的时候不能好好的学习技术,增强自己的实战能力,以至于后来找工作比较费劲。我
- 我认为POJO是一个错误的概念
windshome
javaPOJO编程J2EE设计
这篇内容其实没有经过太多的深思熟虑,只是个人一时的感觉。从个人风格上来讲,我倾向简单质朴的设计开发理念;从方法论上,我更加倾向自顶向下的设计;从做事情的目标上来看,我追求质量优先,更愿意使用较为保守和稳妥的理念和方法。
&