- pytorch 介绍以及常用工具包展示
R0ot
pytorch人工智能python
1.引言1.1背景:神经网络和深度学习的崛起介绍神经网络和深度学习在计算机科学和人工智能中的重要性。1.2PyTorch简介:张量计算框架的演进回顾PyTorch作为张量计算框架的发展历程。强调其灵活性、动态计算图和深度学习社区的支持。2.PyTorch基础2.1张量:PyTorch的核心数据结构创建和操作张量的基本操作,如加法、乘法等。张量的自动微分功能,介绍autograd模块。2.2动态计算
- 人工智能与开源机器学习框架
偶然i
AI写作人工智能aiAI写作科技
链接:华为机考原题TensorFlow是一个开源的机器学习框架,由Google开发和维护。它提供了一个针对神经网络和深度学习的强大工具集,能够帮助开发人员构建和训练各种机器学习模型。TensorFlow的基本概念包括:张量(Tensor):张量是TensorFlow中的核心数据结构,它表示多维数组或矩阵。在TensorFlow中,所有的输入数据、模型参数和输出结果都被表示为张量。计算图(Compu
- 吴恩达深度学习-L1 神经网络和深度学习总结
向来痴_
深度学习人工智能
作业地址:吴恩达《深度学习》作业线上版-知乎(zhihu.com)写的很好的笔记:吴恩达《深度学习》笔记汇总-知乎(zhihu.com)我的「吴恩达深度学习笔记」汇总帖(附18个代码实战项目)-知乎(zhihu.com)此处只记录需要注意的点,若想看原笔记请移步。1.1深度学习入门我们只需要管理神经网络的输入和输出,而不用指定中间的特征,也不用理解它们究竟有没有实际意义。1.2简单的神经网络——逻
- 神经网络和深度学习
灰斗儿
原著作者:michael_nielsen前往神经网络和深度学习神经网络和深度学习是一本免费的在线图书,这本书将教给你:神经网络,是一个由于生物启发的编程规范,使计算机通过观察数据进行学习深度学习,一种强大的神经网络学习技术神经网络和深度学习目前为图像识别、语音识别和自然语言处理中的许多问题提供了最好的解决方案。这本书将教你许多神经网络和深度学习背后的核心概念。有关这本书所采取的方法的更多的细节,看
- 神经网络和深度学习(一):深度学习概论
文哥的学习日记
视频地址:http://mooc.study.163.com/learn/2001281002?tid=2001392029#/learn/content?type=detail&id=2001701005&cid=20016940041、什么是神经网络我们来看一个简单的预测房价的例子,吴恩达老师还真是喜欢用这个例子呢。比如我们用房屋的大小来预测房屋的价格,我们在图上的得到了六个点,那么根据这六个
- 神经网络和深度学习第一周学习笔记
热爱生活的小谢
neuronnetwork:是一种非常强大的学习算法,这种算法的灵感来源与人类的大脑组成ReLUReLU函数的特点是初始值为0,之后变为一条直线singleneuron上图圆圈的部分代表单个神经元,其完成的任务为输入x可以输出相对应的y上图表示由多个神经元聚集而成的神经网络(multipleneuronnetwork)上图为surpervisedlearning的一些具体应用对于第1,2种应用,使
- Sklearn、TensorFlow 与 Keras 机器学习实用指南第三版(四)
绝不原创的飞龙
人工智能tensorflow
原文:Hands-OnMachineLearningwithScikit-Learn,Keras,andTensorFlow译者:飞龙协议:CCBY-NC-SA4.0第二部分:神经网络和深度学习第十章:使用Keras入门人工神经网络鸟类启发我们飞行,牛蒡植物启发了钩带,自然启发了无数更多的发明。因此,看看大脑的结构以获取如何构建智能机器的灵感似乎是合乎逻辑的。这就是激发人工神经网络(ANNs)的逻
- 2021-11-06《深度学习入门》笔记(二)
新手小嵩
深度学习系列笔记深度学习神经网络人工智能
第二章感知机感知机也是作为神经网络(深度学习)的起源的算法。因此,学习感知机的构造也就是学习通向神经网络和深度学习的一种重要思想。首先,感知机是什么?感知机接收多个输入信号,输出一个信号。上图是一个接收两个输入信号的感知机的例子。x1、x2是输入信号,y是输出信号,w1、w2是权重(w是weight的首字母)。图中的⚪称为“神经元”或者“节点”。输入信号被送往神经元时,会被分别乘以固定的权重(w1
- ChatGPT高效提问—基础知识(AIGC)
Bruce_Liuxiaowei
笔记总结经验chatgptAIGC
ChatGPT高效提问—基础知识为了更好地学习AI和prompt相关知识,有必要了解AI领域的几个专业概念。1.1初识AIGCAIGC(artificialintelligencegeneratedcontent)即人工智能生成的内容,可以理解为利用人工智能技术自动生成文本、图像、音频和视频等内容。神经网络和深度学习技术的迅猛发展使得AIGC成为众多领域的重要工具,包括新闻撰写、艺术创作、广告制作
- Coursera吴恩达《神经网络和深度学习》课程笔记(3)
遇见更好的自己
深度学习深度学习神经网络
转载自http://blog.csdn.net/koala_tree/article/details/78059952神经网络和深度学习—浅层神经网络1.神经网络表示简单神经网络示意图:神经网络基本的结构和符号可以从上面的图中看出,这里不再复述。主要需要注意的一点,是层与层之间参数矩阵的规格大小:输入层和隐藏层之间w[1]−>(4,3):前面的4是隐层神经元的个数,后面的3是输入层神经元的个数;b
- 神经网络和深度学习吴恩达coursera笔记
stoAir
深度学习神经网络笔记
DeepLearning文章目录DeepLearningBasicLogisticRegressionsomesignLossfunctioncostfunctionGradientDescentComputationGraphaVectorizationvectorizedImplementing:broadcastingShallowNeuralNetworkRepresentationcom
- 生成式AI人工智能
数据科学与艺术的贺公子
人工智能
生成式AI人工智能生成式AI生成式AI的核心思想生成对抗网络变分自编码器应用总结生成式AI生成式AI指的是基于神经网络和深度学习技术的人工智能系统,其能够根据输入的数据生成新的内容。生成式AI包括了众多的模型和算法,可以用于多个领域的任务,如自然语言处理、图像生成和音频合成等。生成式AI的核心思想是通过学习大量的数据样本,推断出数据的分布和潜在模式,从而能够生成与之类似的新数据。其中最常见的模型是
- Coursera吴恩达《深度学习》课程总结(全)
双木的木
吴恩达深度学习笔记AI笔记深度学习神经网络人工智能python
这里有Coursera吴恩达《深度学习》课程的完整学习笔记,一共5门课:《神经网络和深度学习》、《改善深层神经网络》、《结构化机器学习项目》、《卷积神经网络》和《序列模型》,最后附上人工智能领域大师访谈,干货满满。第一门课:神经网络和深度学习基础,介绍一些基本概念。(四周)第二门课:深度学习方面的实践,严密的构建神经网络,如何真正让它表现良好。超参数调整,正则化诊断偏差和方差,高级优化算法,如Mo
- Course1神经网络和深度学习编程作业
毛十三_
第三周-带有一个隐藏层的平面数据分类建立一个神经网络,带有一个隐藏层。用到的知识:构建具有单隐藏层的2类分类神经网络。使用具有非线性激活功能激活函数,例如tanh。计算交叉熵损失(损失函数)。实现向前和向后传播。numpy:是用Python进行科学计算的基本软件包。sklearn:为数据挖掘和数据分析提供的简单高效的工具。matplotlib:是一个用于在Python中绘制图表的库。testCas
- BP神经网络需要像深度学习一次次的迭代训练吗?
小桥流水---人工智能
机器学习算法Python程序代码深度学习神经网络人工智能
BP神经网络答案:是的,BP神经网络需要像深度学习一次次的迭代训练。总结(BP神经网络和深度学习在本质上有以下区别)答案:是的,BP神经网络需要像深度学习一次次的迭代训练。BP神经网络(误差反传网络)实质上是把一组样本输入/输出问题转化为一个非线性优化问题,并通过负梯度下降算法,利用迭代运算求解权值问题的一种学习方法。其训练过程包括正向传播和反向传播两个阶段。在正向传播阶段,输入数据通过神经网络的
- 深度学习入门之1--感知机
梦灯
python人工智能
目录1什么是感知机2简单逻辑电路及实现2.1与门2.2或门2.3与非门2.4异或门3总结该文章是对《深度学习入门基于Python的理论与实现》的总结,作者是[日]斋藤康毅1什么是感知机感知机是由美国学者FrankRosenblatt在1957年提出来的,感知机也是作为神经网络(深度学习)的起源的算法。因此,学习感知机的构造也就是学习通向神经网络和深度学习的一种重要思想。感知机接收多个输入信号,输出
- Pytorch Overview
丘小羽
pytorchpytorch人工智能python
目录学习目标:要求:监督学习和无监督学习:深度学习基本方法:经典的机器学习方法:表示学习的改进:为什么要进行特征提取:深度学习的改进:深度学习的发展:神经网络的简单介绍:深度学习算法的三大支撑:学习目标:如何使用pytorch来实现一个学习系统。理解最基本的神经网络和深度学习的概念。要求:线性代数。概率论和数理统计。Python语法。监督学习和无监督学习:监督学习:监督学习是指在输入数据和输出数据
- 吴恩达DeepLearningAI课程学习资源和课程总结
李大文
深度学习深度学习机器学习tensorflow
一、学习资源:吴恩达老师的DeepLearningAI课程分为5门课程:神经网络和深度学习、改善深层神经网络、结构化机器学习项目、卷积神经项目和序列模型。目前主要学习了前四门课程,遂做一些总结。以下是一些课堂学习资源:1、课程的视屏资源在有道云课堂上有:https://study.163.com/provider/2001053000/course.htm2、另外还有黄海广博士做的详细的DeepL
- 地球物理中的深度学习理论(DNN的架构、反向传播、梯度消失、梯度爆炸)
hhhhhhhhhhyyyyyy
深度学习
新的数据驱动技术,即深度学习(DL)引起了广泛的关注。DL能准确预测复杂系统,缓解大型地球物理应用中“维数灾难”。在未来地球物理学中涉及到DL的研究提供了几个有希望的方向,例如无监督学习(聚类)、迁移学习(利用之前标记好的数据)、多模态DL(通过DL实现和处理多元模态)、联邦学习、不确定性估计和主动学习。图1给出人工智能、机器学习、神经网络和深度学习之间的包含关系,以及深度学习方法的分类。图11、
- 【吴恩达deeplearning】第一门课 - 第二周 - 神经网络的编程基础(笔记+习题+编程作业)
卷卷0v0
吴恩达深度学习课程神经网络笔记人工智能机器学习深度学习
第一门课-神经网络和深度学习(第二周-神经网络的编程基础)2.1二分类(BinaryClassification)二分类中的逻辑回归2.2逻辑回归(LogisticRegression)2.3逻辑回归的代价函数损失函数(误差函数)代价函数(成本函数)2.4梯度下降法2.8使用计算图求导数2.9逻辑回归中的梯度下降单个样本实例m个样本的梯度下降2.11向量化2.14向量化逻辑回归代码流程(非向量化)
- 【吴恩达deeplearning】第一门课 - 第一周 - 深度学习引言(笔记+习题)
卷卷0v0
吴恩达深度学习课程深度学习笔记人工智能python神经网络
第一门课-神经网络和深度学习(第一周-深度学习引言)1.2什么是神经网络1.3神经网络的监督学习【概念习题】1.2什么是神经网络在预测房屋价格时,除了房屋的面积,其他的特征例如卧室的数量也会影响房屋的价格。邮政编码或许能作为一个特征,反映步行化程度,也可能体现出附近学校的水平有多好。在图上每一个画的小圆圈都可以是ReLU的一部分,或者其它非线性的函数。基于房屋面积和卧室数量,可以估算家庭人口;基于
- 第一门课 神经网络和深度学习
彳亍cium
第一门课神经网络和深度学习(NeuralNetworksandDeepLearning)第一周:深度学习引言(IntroductiontoDeepLearning)1.1欢迎(Welcome)第一个视频主要讲了什么是深度学习,深度学习能做些什么事情。以下是吴恩达老师的原话:深度学习改变了传统互联网业务,例如如网络搜索和广告。但是深度学习同时也使得许多新产品和企业以很多方式帮助人们,从获得更好的健康
- 神经网络和深度学习(吴恩达) 第二周课程提炼
北冥丶有鱼
本系列笔记旨在记录自己的学习过程,能够及时回顾整理学过的东西,有助于加深理解和记忆,方便今后回看。学这个课程的同时,也在看《机器学习》(周志华),所以会将书和视频的内容结合来看,综合学习。本篇主要是第二周课程中讲到的:二分分类、Logistic回归、损失函数、梯度下降、向量化。二分分类:简单理解就是输出的结果是两个离散的值,就像课程中举的例子:通过输入一张图片的信息,经过一系列的计算,输出一个离散
- 神经网络和深度学习(四)—反向传播工作原理
吴丞楚20012100032
姓名:吴丞楚学号:20012100032学院:竹园三号书院【嵌牛导读】简要介绍反向传播算法【嵌牛鼻子】深度学习神经网络反向传播算法【嵌牛提问】如何将反向传播算法应用到神经网络反向传播算法工作原理在上一篇文章,我们看到了神经网络如何通过梯度下降算法学习,从而改变权重和偏差。但是,前面我们并没有讨论如何计算代价函数的梯度,这是一个很大的遗憾。这一篇文章,我们将介绍一种称为反向传播的快速计算梯度的算法。
- Pytorch学习概述
chairon
PyTorch深度学习实践pytorch学习人工智能
目录学习目标人工智能1.智能(Intelligence)1.1人类智能1.2机器学习(人工智能)1.3深度学习1.4学习系统的发展历程传统的机器学习策略2.传统机器学习算法的一些挑战3.神经网络的简要历史3.1BackPropagation(反向传播)3.2神经网络模型发展历程3.3深度学习框架学习目标学会使用Pytorch构建学习系统理解基础的神经网络和深度学习需要具备:线性代数+概率论(随机变
- 阶段五:深度学习和人工智能(学习神经网络和深度学习的基本概念)
哈嗨哈
深度学习人工智能学习python
神经网络和深度学习是人工智能领域的重要分支,它们都基于模拟人脑神经元之间的连接和交互。下面是一些基本概念:神经网络:神经网络是一种模拟人脑神经元连接方式的计算模型,由多个神经元相互连接而成。每个神经元接收输入信号,通过激活函数进行非线性转换,然后将输出传递给其他神经元。神经网络的主要特点是能够学习和优化自身的权重和偏置,以更好地完成特定的任务。深度学习:深度学习是机器学习的一个分支,它使用深层神经
- 神经网络和深度学习(四)—梯度下降算法
吴丞楚20012100032
姓名:吴丞楚学号:20012100032学院:竹园三号书院【嵌牛导读】对梯度下降法的具体应用【嵌牛鼻子】深度学习神经网络梯度下降【嵌牛提问】如何将梯度下降算法应用到神经网络说了这么多,你可能会以为接下来我将介绍牛顿定理,摩擦力和重力对球体的影响。事实上,我们只是做了一个假设,并不是真的要用这个球的运动来寻找最小值。提到球只是用来激发我们的想象力,而不是束缚我们的思维。因此与其陷进物理学⾥凌乱的细节
- 用 C 写一个卷积神经网络
zerok775
编程基础cnn人工智能神经网络
用C写一个卷积神经网络深度学习领域最近发展很快,前一段时间读transformer论文《AttentionIsAllYouNeed》时,被一些神经网络和深度学习的概念搞得云里雾里,其实也根本没读懂。发现深度学习和传统的软件开发工程领域的差别挺大,光读论文可能不是一条很好了解深度学习的路径。所以我换了一个思路,从开源的项目入手,当时我研究了一段时间ggml项目代码(https://github.co
- 介绍 TensorFlow 的基本概念和使用场景
跃跃欲试-迪之
python
TensorFlow是由Google开发的一款开源机器学习框架,它能够支持各种类型的神经网络和深度学习算法。TensorFlow的基本概念包括以下几个方面:Tensor:Tensor表示在TensorFlow中的数据存储和传递方式,可以类比为多维数组。Graph:Graph表示神经网络的计算图,在TensorFlow中所有计算都是通过计算图实现的。Session:Session表示计算图的运行环境
- 感知器(Perceptron)详解以及实现
h52013141
机器学习算法python
感知器(Perceptron)详解感知器是一种简单的线性二分类算法,它是神经网络和深度学习的基础之一。感知器的核心概念感知器模型基于将输入特征加权求和,然后应用激活函数来决定输出类别。1.输入和权重输入:x1,x2,...,xnx_1,x_2,...,x_nx1,x2,...,xn是特征向量。权重:w1,w2,...,wnw_1,w_2,...,w_nw1,w2,...,wn是每个特征的权重。2.
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc