tf-idf算法


原理

TFIDF的主要思想是:如果某个词或短语在一篇文章中出现的频率TF高,并且在其他文章中很少出现,则认为此词或者短语具有很好的类别区分能力,适合用来分类。TFIDF实际上是:TF * IDF,TF词频(Term Frequency),IDF反文档频率(Inverse Document Frequency)。TF表示词条在文档d中出现的频率。IDF的主要思想是:如果包含词条t的文档越少,也就是n越小,IDF越大,则说明词条t具有很好的类别区分能力。如果某一类文档C中包含词条t的文档数为m,而其它类包含t的文档总数为k,显然所有包含t的文档数n=m+k,当m大的时候,n也大,按照IDF公式得到的IDF的值会小,就说明该词条t类别区分能力不强。但是实际上,如果一个词条在一个类的文档中频繁出现,则说明该词条能够很好代表这个类的文本的特征,这样的词条应该给它们赋予较高的权重,并选来作为该类文本的特征词以区别与其它类文档。这就是IDF的不足之处. 在一份给定的文件里,词频(term frequency,TF)指的是某一个给定的词语在该文件中出现的频率。这个数字是对词数(term count)的归一化,以防止它偏向长的文件。(同一个词语在长文件里可能会比短文件有更高的词数,而不管该词语重要与否。)对于在某一特定文件里的词语 t_{i} 来说,它的重要性可表示为:

\mathrm{tf_{i,j}} = \frac{n_{i,j}}{\sum_k n_{k,j}}

以上式子中 n_{i,j} 是该词在文件d_{j}中的出现次数,而分母则是在文件d_{j}中所有字词的出现次数之和。

逆向文件频率(inverse document frequency,IDF)是一个词语普遍重要性的度量。某一特定词语的IDF,可以由总文件数目除以包含该词语之文件的数目,再将得到的商取对数得到:

\mathrm{idf_{i}} =  \log \frac{|D|}{|\{j: t_{i} \in d_{j}\}|}

其中

  • |D|:语料库中的文件总数
  • |\{ j: t_{i} \in d_{j}\}|:包含词语t_{i}的文件数目(即n_{i,j} \neq 0的文件数目)如果该词语不在语料库中,就会导致被除数为零,因此一般情况下使用1 + |\{j : t_{i} \in d_{j}\}|

然后

\mathrm{tf{}idf_{i,j}} = \mathrm{tf_{i,j}} \times  \mathrm{idf_{i}}

某一特定文件内的高词语频率,以及该词语在整个文件集合中的低文件频率,可以产生出高权重的TF-IDF。因此,TF-IDF倾向于过滤掉常见的词语,保留重要的词语。

例子:

我们还是看上回的例子,查找关于“原子能的应用”的网页。我们第一步是在索引中找到包含这三个词的网页(详见关于布尔运算的系列)。现在任何一个搜索引擎都包含几十万甚至是上百万个多少有点关系的网页。那么哪个应该排在前面呢?显然我们应该根据网页和查询“原子能的应用”的相关性对这些网页进行排序。因此,这里的关键问题是如何度量网页和查询的相关性。

我们知道,短语“原子能的应用”可以分成三个关键词:原子能、的、应用。根据我们的直觉,我们知道,包含这三个词多的网页应该比包含它们少的网页相关。当然,这个办法有一个明显的漏洞,就是长的网页比短的网页占便宜,因为长的网页总的来讲包含的关键词要多些。因此我们需要根据网页的长度,对关键词的次数进行归一化,也就是用关键词的次数除以网页的总字数。我们把这个商称为“关键词的频率”,或者“单文本词汇频率”(Term Frequency),比如,在某个一共有一千词的网页中“原子能”、“的”和“应用”分别出现了 2 次、35 次 和 5 次,那么它们的词频就分别是 0.002、0.035 和 0.005。 我们将这三个数相加,其和 0.042 就是相应网页和查询“原子能的应用”
相关性的一个简单的度量。概括地讲,如果一个查询包含关键词 w1,w2,...,wN, 它们在一篇特定网页中的词频分别是: TF1, TF2, ..., TFN。 (TF: term frequency)。 那么,这个查询和该网页的相关性就是:
TF1 + TF2 + ... + TFN。

读者可能已经发现了又一个漏洞。在上面的例子中,词“的”站了总词频的 80% 以上,而它对确定网页的主题几乎没有用。我们称这种词叫“应删除词”(Stopwords),也就是说在度量相关性是不应考虑它们的频率。在汉语中,应删除词还有“是”、“和”、“中”、“地”、“得”等等几十个。忽略这些应删除词后,上述网页的相似度就变成了0.007,其中“原子能”贡献了0.002,“应用”贡献了 0.005。

细心的读者可能还会发现另一个小的漏洞。在汉语中,“应用”是个很通用的词,而“原子能”是个很专业的词,后者在相关性排名中比前者重要。因此我们需要给汉语中的每一个词给一个权重,这个权重的设定必须满足下面两个条件:

1. 一个词预测主题能力越强,权重就越大,反之,权重就越小。我们在网页中看到“原子能”这个词,或多或少地能了解网页的主题。我们看到“应用”一次,对主题基本上还是一无所知。因此,“原子能“的权重就应该比应用大。

2. 应删除词的权重应该是零。

我们很容易发现,如果一个关键词只在很少的网页中出现,我们通过它就容易锁定搜索目标,它的权重也就应该大。反之如果一个词在大量网页中出现,我们看到它仍然不很清楚要找什么内容,因此它应该小。概括地讲,假定一个关键词 w 在 Dw 个网页中出现过,那么 Dw 越大,w 的权重越小,反之亦然。在信息检索中,使用最多的权重是“逆文本频率指数” (Inverse document frequency 缩写为IDF),它的公式为log(D/Dw)其中D是全部网页数。比如,我们假定中文网页数是D=10亿,应删除词“的”在所有的网页中都出现,即Dw=10亿,那么它的IDF=log(10亿/10亿)= log (1) = 0。假如专用词“原子能”在两百万个网页中出现,即Dw=200万,则它的权重IDF=log(500) =6.2。又假定通用词“应用”,出现在五亿个网页中,它的权重IDF = log(2)
则只有 0.7。也就只说,在网页中找到一个“原子能”的比配相当于找到九个“应用”的匹配。利用 IDF,上述相关性计算个公式就由词频的简单求和变成了加权求和,即 TF1*IDF1 + TF2*IDF2 +... + TFN*IDFN。在上面的例子中,该网页和“原子能的应用”的相关性为 0.0161,其中“原子能”贡献了 0.0126,而“应用”只贡献了0.0035。这个比例和我们的直觉比较一致了。

TF/IDF(term frequency/inverse document frequency) 的概念被公认为信息检索中最重要的发明。在搜索、文献分类和其他相关领域有广泛的应用。讲起 TF/IDF 的历史蛮有意思。IDF 的概念最早是剑桥大学的斯巴克-琼斯[注:她有两个姓] (Karen Sparck Jones)提出来的。斯巴克-琼斯 1972 年在一篇题为关键词特殊性的统计解释和她在文献检索中的应用的论文中提出IDF。遗憾的是,她既没有从理论上解释为什么权重IDF 应该是对数函数 log(D/Dw)(而不是其它的函数,比如平方根),也没有在这个题目上作进一步深入研究,以至于在以后的很多文献中人们提到 TF/IDF 时没有引用她的论文,绝大多数人甚至不知道斯巴克-琼斯的贡献。同年罗宾逊写了个两页纸的解释,解释得很不好。倒是后来康乃尔大学的萨尔顿(Salton)多次写文章、写书讨论 TF/IDF 在信息检索中的用途,加上萨尔顿本人的大名(信息检索的世界大奖就是以萨尔顿的名字命名的)。很多人都引用萨尔顿的书,甚至以为这个信息检索中最重要的概念是他提出的。当然,世界并没有忘记斯巴克-琼斯的贡献,2004年,在纪念文献学学报创刊 60 周年之际,该学报重印了斯巴克-琼斯的大作。罗宾逊在同期期刊上写了篇文章,用香农的信息论解释 IDF,这回的解释是对的,但文章写的并不好、非常冗长(足足十八页),把一个简单问题搞复杂了。其实,信息论的学者们已经发现并指出,其实 IDF 的概念就是一个特定条件下、关键词的概率分布的交叉熵(Kullback-Leibler Divergence)(详见上一系列)。这样,信息检索相关性的度量,又回到了信息论。


以上摘自wiki

http://zh.wikipedia.org/wiki/TF-IDF


如果您想了解TF/IDF具体算法的详细数学方法,可以参考下面的链接

http://bbs.e3ol.com/blog-170225-6014.html


然后我们可以使用多维余弦向量算法比较余弦相似度来匹配文章相似度。

http://blog.sina.com.cn/s/blog_7bfd87650100vw1p.html


了解了基本概念,可以尝试着写算法了。

你可能感兴趣的:(c/c++)