本文章为本人在ops内容建设团队第二期分享
欢迎关注微信公众号:OPS无界工程师
本文章最后更新时间:2018-05-13
个人博客地址:blog.sqdyy.cn
大家晚上好,今晚由我来分享基于telegraf+influxdb+grafana构建监控平台的方案,首先我们先来了解InfluxDB。influxdb是一款专为时序数据编写的高性能数据库,采用GO语言开发,并且开源!它是TICK技术栈的一部分。它采用TSM引擎进行高速摄取和数据压缩。并提供高性能的写入/查询 HTTP API,其表达式语句类似SQL查询语句(但数据结构概念不太一样,详见InfluxDB design insights and tradeoffs。
先对上面的一些名称进行解释,TICK技术栈指的是InfluxData公司研发的四款监控开源产品,包括Telegraf、InfluxDB、Chronograf、Kapacitor。其中InfluxDB使用最广泛,是开源的时序数据库,一个比较常见的应用场景为日志存储。Kapacitor提供了基于influxdb的监控报警方案,支持多种数据聚合,选择,变换,预测方法。Chronograf用于对数据进行展示,可以使用功能更强大的Grafana替代。
TSM引擎这块我也不太熟悉,属于进阶知识,网上资料也不多,感兴趣的大佬可以自己去研究:
influxdb
时序数据库主要用于存储系统的监控数据,一般具有如下特征:
- 以时间为维度的高效查询
- 方便的down sampling
- 高效的处理过期数据
对于influxdb的学习方式,我建议先参考Linux大学的InfluxDB系列教程对Influxdb有一个基本的了解(但不需要死抠,因为其中有些描述是过时的),然后再去influxdb官档深入学习为佳。
下载并安装influxdb
# 添加yum 源
cat <$releasever
baseurl = https://repos.influxdata.com/rhel/\$releasever/\$basearch/stable
enabled = 1
gpgcheck = 1
gpgkey = https://repos.influxdata.com/influxdb.key
EOF
sudo yum install influxdb
influx -version
复制代码
启动服务、添加开机启动:
sudo service influxdb start
sudo systemctl start influxdb
复制代码
主要概念
InfluxDB与传统数据库在概念上有一些不同,我介绍一些基本的概念,如果你想了解更多请参考官档influxdb concepts
与传统数据库中的名词做比较
influxDB中的名词 | 传统数据库中的概念 |
---|---|
database | 数据表 |
measurement | 数据库中的表 |
points | 表里面的一行数据 |
InfluxDB的独有概念
刚才说的是InfluxDB与传统数据库相同的概念,下面介绍它的特有概念。
Point
Point相当于传统数据库中表里面的一行数据,由timestamp(时间戳),field(数据),tags(标签)组成。
Point属性 | 传统数据库中的概念 |
---|---|
timestamp | 每个数据都需要一个时间戳(主索引&自动生成),在TSM存储引擎中会特殊对待,以为了优化后续的查询操作 |
field | (field key,field set,field value) 各种记录值(没有索引的属性),例如温度 |
tag | (tag key,tag sets,tag value) 各种有索引的属性,例如地区 |
series
series相当于是InfluxDB中一些数据的集合。所有在数据库中的数据,都要通过图表展示出来,而series则表示表里面的数据,可以在图表上画成几条线(通过tags排列组合算出来):
> show series from cpu
key
---
cpu,cpu=cpu-total,host=VM_42_233_centos
cpu,cpu=cpu0,host=VM_42_233_centos
cpu,cpu=cpu1,host=VM_42_233_centos
cpu,cpu=cpu2,host=VM_42_233_centos
cpu,cpu=cpu3,host=VM_42_233_centos
复制代码
其代码结构如下:
type Series struct {
mu sync.RWMutex
Key string // series key
Tags map[string]string // tags
id uint64 // id
measurement *Measurement // measurement
}
复制代码
shard
每个存储策略下会存在许多shard,每个shard存储一个指定时间段的数据,例如7点-8点的数据落入shard0中,8点-9点的数据落到shard1中,每个shard都对应一个底层的tsm存储引擎,有独立的cache,wal,tsm file。
数据保留策略
保留策略(RP)是用来定义数据在InfluxDB存放的时间,或者定义保存某个期间的数据。当你创建数据库时,InfluxDB会自动创建一个autogen(具有无限保留的保留策略):
> SHOW RETENTION POLICIES ON telegraf
name duration shardGroupDuration replicaN default
---- -------- ------------------ -------- -------
autogen 0s 168h0m0s 1 true
复制代码
上面是查询数据库现有策略的语句,查询结果各字段含义如下:
字段 | 含义 |
---|---|
name | 策略名称 |
duration | 持续时间,0代表无限保留 |
shardGroupDuration | shardGroup是InfluxDB的一个基本储存结构,168h0m0s表上单个shard所存储的时间间隔为168小时,超过168小时后会被存放到下一个shard中 |
replicaN | 全称replication,副本个数(不太懂) |
default | 是否是默认策略 |
func shardGroupDuration(d time.Duration) time.Duration {
if d >= 180*24*time.Hour || d == 0 { // 6 months or 0
return 7 * 24 * time.Hour
} else if d >= 2*24*time.Hour { // 2 days
return 1 * 24 * time.Hour
}
return 1 * time.Hour
}
复制代码
我们可以创建一个新的保留策略,下面语句在telegraf库中创建了一个2小时保留策略,名为2h0m0s并设置为默认策略:
> CREATE RETENTION POLICY "2h0m0s" ON "telegraf" DURATION 2h REPLICATION 1 DEFAULT
> SHOW RETENTION POLICIES ON telegraf
name duration shardGroupDuration replicaN default
---- -------- ------------------ -------- -------
autogen 0s 168h0m0s 1 false
2h0m0s 2h0m0s 1h0m0s 1 true
复制代码
目前我们的autogen已经不再是默认策略,如果你需要查询这个策略的数据,你需要在查询时显式的加上策略名:
> SELECT time,host,usage_system FROM "autogen".cpu limit 2
name: cpu
time host usage_system
---- ---- ------------
1526008670000000000 VM_42_233_centos 1.7262947210419817
1526008670000000000 VM_42_233_centos 1.30130130130254
复制代码
更多保留策略相关的内容,请参考官档database_management。
连续查询
连续查询(CQ)是在数据库中自动定时启动的一组语句,InfulxDB会将查询结果存储在指定的数据表中。
- 使用连续查询是最优降低采样率的方式,连续查询和存储策略搭配使用将会大大降低InfulxDB的系统占用量。
- 使用连续查询后,数据会存放到指定的数据表中,这样就为以后统计不同精度的数据提供了方便。
- 连续查询一旦创建就无法更改。要更改连续查询,您必须先DROP再重新使用CREATE创建新查询。
下面是连续查询的语法:
// 基本语法
CREATE CONTINUOUS QUERY ON
RESAMPLE EVERY FOR
BEGIN
SELECT <function[s]> INTO
FROM [WHERE ]
GROUP BY time()[,]
END
复制代码
例如,下面语句在telegraf库中新建了一个名为cq_30m的连续查询,每30分钟会取used字段的平均值加入到mem_used_30m表中。使用的数据保留策略都是default:
CREATE CONTINUOUS QUERY cq_30m ON telegraf BEGIN SELECT mean(used) INTO mem_used_30m FROM mem GROUP BY time(30m) END
复制代码
下面是一些常用操作:
SQL | 描述 |
---|---|
SHOW CONTINUOUS QUERIES | 查询所有CQ |
DROP CONTINUOUS QUERY |
删除连续查询 |
更多连续查询相关的内容,请参考官档continuous_queries。
常用函数
InfluxDB提供了很多的有用的函数,其中分为三类:
- 聚合类函数
函数 | 描述 |
---|---|
count(field_key) | 返回计数 |
DISTINCT(field_key) | 返回唯一值 |
INTEGRAL(field_key) | 计算字段值覆盖的曲面的面积值并得到面积之和 |
MEAN(field_key) | 返回平均值 |
MEDIAN(field_key) | 返回中间值 |
MODE(field_key) | 返回字段里最频繁的值 |
SPREAD(field_key) | 返回最大差值 |
SUM(field_key) | 返回总和 |
- 选择类函数
函数 | 描述 |
---|---|
BOTTOM(field_key,N) | 返回最小的N个值 |
FIRST(field_key) | 返回一个字段中最老的取值 |
LAST(field_key) | 返回一个字段中最新的取值 |
MAX(field_key) | 返回一个字段中的最大值 |
MIN(field_key) | 返回一个字段中的最小值 |
PERCENTILE(field_key,N) | Returns the Nth percentile field value. |
SAMPLE(field_key,N) | 返回N个字段的随机样本 |
TOP(field_key,N) | 返回最大的N个值 |
- 转换类函数
函数 | 描述 |
---|---|
CEILING() | ~ |
CUMULATIVE_SUM() | ~ |
DERIVATIVE() | ~ |
DIFFERENCE() | ~ |
ELAPSED() | ~ |
FLOOR() | ~ |
HISTOGRAM() | ~ |
MOVING_AVERAGE() | ~ |
NON_NEGATIVE_DERIVATIVE() | ~ |
NON_NEGATIVE_DIFFERENCE() | ~ |
- 预测类
函数 | 描述 |
---|---|
HOLT_WINTERS() | 季节性预测算法-对数据流量趋势进行预测和预警 |
Telegraf
建立起了对时序库的概念后,接下来我们就该往时序库写数据了,你可以通过你应用服务的metrics程序采集指标,然后通过influxdb提供的http api向influxdb写入数据,但是本期我们并不介绍这样的用法(如java的metrics还需介绍java的语法),下面为大家介绍一款与influxdb完美结合的采集数据的代理程序:Telegraf
Telegraf是用Go写的代理程序,可以用于收集系统和服务的统计数据,是TICK技术栈的一部分。它具备输入插件,可以直接从系统获取指标数据,从第三方API获取指标数据,甚至可以通过statsd和Kafka获取指标数据。它还具备输出插件,可以将采集的指标发送到各种数据存储,服务和消息队列。比如InfluxDB,Graphite,OpenTSDB,Datadog,Librato,Kafka,MQTT,NSQ等等。
下载并安装Telegraf:
wget https://dl.influxdata.com/telegraf/releases/telegraf-1.6.2-1.x86_64.rpm
sudo yum install telegraf-1.6.2-1.x86_64.rpm
telegraf -version
复制代码
如果你的telegraf是安装的,其配置文件位置为:
/etc/telegraf/telegraf.conf
复制代码
编辑配置文件,将我们配置好的influxdb数据库指定为期望的输出源:
[[outputs.influxdb]]
urls=["http://localhost:8086"]
复制代码
启动服务、添加开机启动:
sudo systemctl start telegraf.service
sudo service telegraf status
sudo systemctl enable telegraf.service
复制代码
在InfluxDB上检查默认配置下telegraf采集了哪些数据:
> show databases
> use telegraf
> show measurements
> SHOW FIELD KEYS
复制代码
如何进行配置
默认配置下,会启用system分类下的INPUT插件,即telegraf.conf有如下配置:
# Read metrics about cpu usage
# 读取有关CPU使用情况的指标
[[inputs.cpu]]
## Whether to report per-cpu stats or not
percpu = true
## Whether to report total system cpu stats or not
totalcpu = true
## If true, collect raw CPU time metrics.
collect_cpu_time = false
## If true, compute and report the sum of all non-idle CPU states.
report_active = false
# Read metrics about disk usage by mount point
# 通过mount point读取有关磁盘使用情况的指标
[[inputs.disk]]
## Ignore mount points by filesystem type.
ignore_fs = ["tmpfs", "devtmpfs", "devfs"]
# Read metrics about disk IO by device
# 通过device读取有关磁盘IO的指标
[[inputs.diskio]]
# Get kernel statistics from /proc/stat
# 通过/proc/stat获取内核统计信息
[[inputs.kernel]]
# no configuration
# Read metrics about memory usage
# 读取有关内存使用量的指标
[[inputs.mem]]
# no configuration
# Get the number of processes and group them by status
# 获取进程的数量并按状态分组
[[inputs.processes]]
# no configuration
# Read metrics about swap memory usage
# 读取有关交换内存使用量的指标
[[inputs.swap]]
# no configuration
# Read metrics about system load & uptime
# 读取有关系统负载和运行时间的指标
[[inputs.system]]
# no configuration
复制代码
其具体采集数据如下(其中第一级别为measurements,第二级别为字段(省略了时间戳字段)):
- cpu[units: percent (out of 100)]
- usage_guest float
- usage_guest_nice float
- usage_idle float
- usage_iowait float
- usage_irq float
- usage_nice float
- usage_softirq float
- usage_steal float
- usage_system float
- usage_user float
- disk
- free integer
- inodes_free integer
- inodes_total integer
- inodes_used integer
- total integer
- used integer
- used_percent float
- diskio
- io_time integer
- iops_in_progress integer
- read_bytes integer
- read_time integer
- reads integer
- weighted_io_time integer
- write_bytes integer
- write_time integer
- writes integer
- kernel
- boot_time integer
- context_switches integer
- entropy_avail integer
- interrupts integer
- processes_forked integer
- mem
- active integer
- available integer
- available_percent float
- buffered integer
- cached integer
- free integer
- inactive integer
- slab integer
- total integer
- used integer
- used_percent float
- wired integer
- processes
- blocked integer
- dead integer
- idle integer
- paging integer
- running integer
- sleeping integer
- stopped integer
- total integer
- total_threads integer
- unknown integer
- zombies integer
- swap
- free integer
- in integer
- out integer
- total integer
- used integer
- used_percent float
- system
- load1 float
- load15 float
- load5 float
- n_cpus integer
- n_users integer
- uptime integer
- uptime_format string
复制代码
如何查找指标及其采集数据
telegraf主要分为输入插件和输入插件,其源码目录分别对应plugins/inputs
和plugins/outputs
,你只要参考telegraf官档找到你所需要的插件然后去到源码对应的目录找到相应的.md
文件,按照提示获取相关信息进行配置即可。
启用telegraf服务后,你会发现在influxdb中多了一个telegraf的库,其中有多个measurement,这说明我们的数据采集已经成功了。有了数据以后,我们需要关心的是如何把数据聚合然后进行展示。下面将介绍一款可视化套件grafana。
Grafana
Grafana是一个开源指标分析和可视化套件,常用于可视化基础设施的性能数据和应用程序分析的时间序列数据。也可以应用于其他领域,包括工业传感器,家庭自动化,天气和过程控制。但请注意,我们使用Grafana最关心的是如何把数据进行聚合后进行展示。
Grafana支持多种不同的时序数据库数据源,Grafana对每种数据源提供不同的查询方法,而且能很好的支持每种数据源的特性。它支持下面几种数据源:Graphite、Elasticsearch、CloudWatch、InfluxDB、OpenTSDB、Prometheus、MySQL、Postgres、Microsoft SQL Server (MSSQL)。每种数据源都有相应的文档,您可以将多个数据源的数据合并到一个单独的仪表板上,本文只举例influxdb数据源的应用。
下载并安装Telegraf:
# 安装grafana
wget https://s3-us-west-2.amazonaws.com/grafana-releases/release/grafana-5.1.2-1.x86_64.rpm
# 启动服务、添加开机启动:
systemctl enable grafana-server
systemctl start grafana-server
# 配置
配置文件 /etc/grafana/grafana.ini
systemd服务名 grafana-server.service
默认日志文件 /var/log/grafana/grafana.log
默认数据库文件 /var/lib/grafana/grafana.db
复制代码
简单使用
启动服务后访问http://localhost:3000
,默认端口为3000
,可在配置文件修改。默认用户名和密码为admin/admin。登录后按照提示配置数据源:
接着创建一个dashboard:
我们先选择导入模板的方式来预览效果,再来了解grafana/dashboard的相关配置,这里选择官方提供的一套Telegraf: system dashboard,地址https://grafana.com/dashboards/928
。请你根据它的提示配置你的telegraf。然后在dashboards中选择import->Upload.jsonFile
,将下载的模板导入:
查看结果:
你还可以安装一些插件,例如安装一款时间面板插件。
安装方式是到你的/var/lib/grafana/plugins目录下执行grafana-cli工具安装插件,下面安装时间面板插件:
> sudo grafana-cli plugins install grafana-clock-panel
installing grafana-clock-panel @ 0.0.9
from url: https://grafana.com/api/plugins/grafana-clock-panel/versions/0.0.9/download
into: /var/lib/grafana/plugins
✔ Installed grafana-clock-panel successfully
Restart grafana after installing plugins .
# 重启服务
> sudo systemctl restart grafana-server
复制代码
自己动手配置几个
我们创建一个新的dashboard,Dashboard由多个Row组成,一行Row分为12列,我们可以自定义面板的Span宽度和高度。现在我们选择添加一个Singlestat(如果是绘制线性表选Graph),然后点击Panel Title->Edit编辑我们的面板信息,默认打开Metrics视图,我们修改后得到如下信息:
我们修改options中的单位和颜色:
同样的,你可以尝试添加其他的面板实现下面效果:
Grafana的功能非常丰富,在这里不能详细叙述,请您参考官档了解更多: http://docs.grafana.org/features/datasources/