CNN误差反传时旋转卷积核的简明分析

       CNN(卷积神经网络)的误差反传(error back propagation)中有一个非常关键的的步骤就是将某个卷积(Convolve)层的误差传到前一层的池化(Pool)层上,因为在CNN中是2D反传,与传统神经网络中的1D反传有点细节上的不同,下面通过一个简单的例子来详细分解一下这个反传步骤。


       假设在一个CNN网络中,P代表某个池化层,K代表卷积核,C代表卷基层,首先来看一下前向(feed forward)计算,从一个池化层经过与卷积核(Kernel)的运算得到卷积层:



       将前向计算的步骤进行分解,可以得到以下公式:



       下面根据这个前向计算的步骤来分解出反向传播的步骤:



       首先要确定误差传播的目的地,从deltaC到deltaP,所以先从deltaP1开始分析


       从前面的前向计算过程中可以找出P1参与了C中哪些元素的计算,并且可以根据对应的前向计算得出反向传播的计算公式:



       依次类推,还有如下公式:


       对于P2


       对于P3


       对于P4



       对于P5



       一直可以推到P9


       总结这9个反向传播的公式到一起:



       进一步可以发现,这9个公式可以用如下的卷积过程来实现:



       至此,从计算的细节上解释了为什么反向传播的时候要把卷积核旋转180°,并采用full的形式来进行卷积运算。

       (注:上文所说的“卷积”被认为是一种不会180°旋转第二个因子的的计算过程,实际上matlab中的的conv2(a,b)会自动180°旋转b,换句话说,在matlab中实现这个步骤的时候不用提前旋转,留给conv2函数自行旋转即可)


你可能感兴趣的:(深度学习)