Keeping track of all the cows can be a tricky task so Farmer John has installed a system to automate it. He has installed on each cow an electronic ID tag that the system will read as the cows pass by a scanner. Each ID tag's contents are currently a single string with length M (1 ≤ M ≤ 2,000) characters drawn from an alphabet of N (1 ≤ N ≤ 26) different symbols (namely, the lower-case roman alphabet).
Cows, being the mischievous creatures they are, sometimes try to spoof the system by walking backwards. While a cow whose ID is "abcba" would read the same no matter which direction the she walks, a cow with the ID "abcb" can potentially register as two different IDs ("abcb" and "bcba").
FJ would like to change the cows's ID tags so they read the same no matter which direction the cow walks by. For example, "abcb" can be changed by adding "a" at the end to form "abcba" so that the ID is palindromic (reads the same forwards and backwards). Some other ways to change the ID to be palindromic are include adding the three letters "bcb" to the begining to yield the ID "bcbabcb" or removing the letter "a" to yield the ID "bcb". One can add or remove characters at any location in the string yielding a string longer or shorter than the original string.
Unfortunately as the ID tags are electronic, each character insertion or deletion has a cost (0 ≤ cost ≤ 10,000) which varies depending on exactly which character value to be added or deleted. Given the content of a cow's ID tag and the cost of inserting or deleting each of the alphabet's characters, find the minimum cost to change the ID tag so it satisfies FJ's requirements. An empty ID tag is considered to satisfy the requirements of reading the same forward and backward. Only letters with associated costs can be added to a string.
3 4 abcb a 1000 1100 b 350 700 c 200 800Sample Output
900Hint
动态规划的题还是不行,想不到啊,唉,慢慢练吧~~~
引用大神的思路↓↓↓
*****************************************************************************************************************************************************************************************
这个dp题可以算是很顺利的一题,虽说之前看了看就觉得很难没管它,但是今天真的不一样,开始其实思路还有点乱麻,只过了几分钟我忽然间就理清了思 路,得到了一个dp子问题,可能还要归功于之前做了一题叫括号匹配的类似dp给了我灵感,真的构造出来和没有构造出前的差别很大啊!
同学们!相信自己的实力吧!但是要自信加合理推导才能得出信服的答案!
其实dp很难逃出3种思路:
1、一维线性dp:每次考虑i时,选择最优子问题要么在i-1,要么在1...i-1里;
2、二维线性dp:考虑(i,j)子问题时,选择最优子问题要么在(i+1,j)、(i,j-1),要么在i<= k <=j,在k里;
3、树形dp:考虑i节点最优时,选择子节点最优,一般融合了01背包dp的双重dp。
上面3中模式也是我在做题后才发现的。
这个dp题其实就可以仿照第2中思路。
假设一个字符串Xx....yY;对于求这个字符串怎么求呢?
分4中情况讨论:
1、去掉X,取x....yY回文;
2、去掉Y,取Xx....y回文;
3、在左边加上X,取Xx....yYX回文;
4、在右边加上Y,取YXx....y回文。
至于去掉X、Y肯定没有第1、2中情况合算;加上X、Y肯定没有第3、4中情况合算。
因此令dp[i][j]为i...j要变成回文字符串的最小代价。
方程:
dp[i][j] = min{ dp[i+1][j] + {去掉X的代价},dp[i+1][j] + {加上X的代价},
dp[i][j-1]+ {去掉Y的代价},dp[i][j-1] +{加上Y的代价}};
其实分析发现,对于X而言,只要去 去掉 和加上 X 最小代价就行(因为前面dp串一样),Y同理。
因此最后得出:
dp[i][j] = min{ dp[i+1][j] +min{ {去掉X的代价}, {加上X的代价}},
dp[i][j-1]+min{ {去掉Y的代价}, {加上Y的代价}}};
dp时候还有些注意事项:
比如当X和Y字符一样时,则在dp时必须先为x...y的最小代价。
读取时也应注意。
*****************************************************************************************************************************************************************************************
代码:
#include
#include
using namespace std;
int dp[2005][2005]; //第i到j个元素是回文的最小花费
int main()
{
int n,m,a,b;
char c;
int cost[30];
char s[2005];
cin>>n>>m;
cin>>s;
memset(dp,0,sizeof(dp));
for(int i=0;i>c>>a>>b;
cost[c-'a']=min(a,b); //加减属同种属性
}
for(int i=m-1;i>=0;i--) //从后往前
{
for(int j=i+1;j