hiho一下 第二十四周---最短路径·二:Floyd算法

最短路径·二:Floyd算法

时间限制: 10000ms
单点时限: 1000ms
内存限制: 256MB

描述

万圣节的中午,小Hi和小Ho在吃过中饭之后,来到了一个新的鬼屋!

鬼屋中一共有N个地点,分别编号为1..N,这N个地点之间互相有一些道路连通,两个地点之间可能有多条道路连通,但是并不存在一条两端都是同一个地点的道路。

由于没有肚子的压迫,小Hi和小Ho决定好好的逛一逛这个鬼屋,逛着逛着,小Hi产生了这样的问题:鬼屋中任意两个地点之间的最短路径是多少呢?

提示:其实如果你开心的话,完全可以从每个节点开始使用Dijstra算法_(:з」∠)_。

输入

每个测试点(输入文件)有且仅有一组测试数据。

在一组测试数据中:

第1行为2个整数N、M,分别表示鬼屋中地点的个数和道路的条数。

接下来的M行,每行描述一条道路:其中的第i行为三个整数u_i, v_i, length_i,表明在编号为u_i的地点和编号为v_i的地点之间有一条长度为length_i的道路。

对于100%的数据,满足N<=10^2,M<=10^3, 1 <= length_i <= 10^3。

对于100%的数据,满足迷宫中任意两个地点都可以互相到达。

输出

对于每组测试数据,输出一个N*N的矩阵A,其中第i行第j列表示,从第i个地点到达第j个地点的最短路径的长度,当i=j时这个距离应当为0。

样例输入
5 12
1 2 967
2 3 900
3 4 771
4 5 196
2 4 788
3 1 637
1 4 883
2 4 82
5 2 647
1 4 198
2 4 181
5 2 665
样例输出
0 280 637 198 394 
280 0 853 82 278 
637 853 0 771 967 
198 82 771 0 196 
394 278 967 196 0 



分析:Floyd模板题。


hiho一下——Floyd算法:

小Ho道:“你说的很有道理,我只需要从每个节点开始使用Dijstra算法就可以了!”

小Hi摇摇头道:“解决问题不是关键,学到知识才是关键,而且知识本身也远远没有掌握学习的方法重要!”

小Ho只得答道:“好的好的,听你说便是了!”

于是小Hi便开心道:“这次要说的算法叫做Floyd算法,是一种用于求图结构上任意两点间最短距离的算法!”

小Ho嘀咕道:“你都写标题上了,能不知道么?”

小Hi强行装作没听到,继续说道:“这个算法的核心之处在于数学归纳法——MinDistance(i, j)之间最短路径中可以用到的节点是一点点增加的!

“你这话每一个字我都听得懂,但是这句话为什么我听不懂呢……”小Ho无奈道。

“那我这么说吧,首先,最开始的时候,MinDistance(i, j)——即从第i个点到第j个点的最短路径的长度,拥有一个限制:这条路径不能经过任何节点。”小Hi道。

那就是说如果从i个点到第j个点之间没有直接相连的边的话,这个长度就是无穷大咯?”小Ho总结道:“只需要把输入的边填进MinDistance中即可!”

“对!”小Hi满意于小Ho的上道,继续说道:“然后我放开限制,我允许MinDistance(i, j)——从第i个点到第j个点的最短路径的长度,拥有的限制,变为:这条路径仅允许经过1号节点。

“这个也简单,对于两个节点i, j,我只需要比较MinDistance(i, j)原来的值和MinDistance(i, 1)+MinDistance(1, j)的值,取较小的一个作为新的MinDistance(i, j)就可以了——毕竟原来的MinDistance都是不经过任何节点,那么这样求出来的新的MinDistance(i, j)只有可能经过1号节点。”

“那么接下来就是关键的了,我将限制继续放宽——路径仅允许经过1、2号节点。”小Hi继续说道。

“那其实也没有任何变化吧,对于两个节点i, j,我只需要比较MinDistance(i, j)原来的值和MinDistance(i, 2)+MinDistance(2, j)的值,取较小的一个作为新的MinDistance(i, j),之所以可以这样是因为,原来的MinDistance都是在限制“仅允许经过1号节点”下,求出来的,所以新求出来的MinDistance(i, j)也只有可能经过1、2号节点!

“那我继续放开限制呢?”小Hi问道。

“也没有什么区别了,每放开一个新的节点k允许作为路径中的节点,就对于任意的i, j,用MinDistance(i, k)+MinDistance(k, j)去更新MinDistance(i, j),直到1..N号节点都被添加进限制,此时也就等于没有限制了,那么这个时候的MinDistance(i, j)就是我们所想要求的值,写成伪代码就是这样!”

for k = 1 .. N
    for i = 1 .. N 
        for j = 1 .. N
            若i, j, k各不相同
                MinDistance[i, j] = min{MinDistance[i, j], MinDistance[i, k] + MinDistance[k, j]}

“看来你已经很明白了呢!”小Hi嘿嘿一笑,往鬼屋深处跑了去——那么接下来就是小Ho利用求出的最短路径,去找到小Hi的时候了!



注:上文摘自:hihoCoder 之 hiho一下




AC代码:

#include 
#include 
#include 
using namespace std;
#define INF 123456789
long long a[1005][1005];       //任意两点间的最短路径长度


int main(){
//  freopen("in.txt","r", stdin);
    int n, m, x, y, t;
    while(scanf("%d%d", &n, &m)!=EOF){
        for(int i=1; i<=m; i++)
            for(int j=1; j<=n; j++){
                a[i][j] = INF;
                if(i == j) a[i][j] = 0;
            }
        for(int i=1; i<=m; i++){
            scanf("%d%d%d", &x, &y, &t);
            if(a[x][y] > t)  a[x][y] = a[y][x] = t;
        }

         for(int k=1; k<=n; k++)               //Floyd求任两点之间的最短路径
            for(int i=1; i<=n; i++)
                for(int j=1; j<=n; j++)
                    a[i][j] = min(a[i][j], a[i][k] + a[k][j]);


        for(int i=1; i<=n; i++){
            for(int j=1; j<=n; j++){
                if(j>1) printf(" ");
                printf("%lld", a[i][j]);
            }
            printf("\n");
        }
    }
    return 0;
}



hiho一下,是不是很厉害呀^_^



你可能感兴趣的:(最短路径,hihoCoder)