好累,坐了一天火车, 终于到学校了。
思路:仔细观察威佐夫博弈,发现P态的所有数字都是不重复的,例如(0,0)、(1,2)、(3,5)、(4,7)、(6,
10)、(8,13)、(9,15)、(11,18)、(12,20)。而且威佐夫博弈中如果(a, b)是P态,那么满足a == (int)((b - a)*(√5 + 1) / 2),那么如果知道a或则b就能计算出b或者a,注意这里有取整,无法准确地得到答案,此时假设我们已经知道了a,那么b=a*(√5+1)/2,此时的b不一定是正确的b,因为会有误差,所以可以枚举[b-5, b+5]区间的所有数,来得到正确的b,同理有b得到a也是同样的道理,这是单独取一堆石子的情况。
对于同时在两堆石子取的情况,两堆石子的差(b-a)是定值,那么很容易得到准确地a,a加上差就是b,注意虽然可以得到a和b,但是可能a和b比原本给定的a和b大,这是不合理的。
总的复杂度是O(1)。
AC代码
#include
#include
#include
#include
#include
#include
#include
#include
如有不当之处欢迎指出!