Caffe-MobileNetSSD下ncnn推理实现-4

安装caffe

git clone https://github.com/BVLC/caffe或者git clone https://gitee.com/mirrors/caffe.git

cp Makefile.config.example Makefile.config

Makefile.config文件:

## Refer to http://caffe.berkeleyvision.org/installation.html

# Contributions simplifying and improving our build system are welcome!

 

# cuDNN acceleration switch (uncomment to build with cuDNN).

# USE_CUDNN := 1

 

# CPU-only switch (uncomment to build without GPU support).

CPU_ONLY := 1

 

# uncomment to disable IO dependencies and corresponding data layers

USE_OPENCV := 0

# USE_LEVELDB := 0

# USE_LMDB := 0

# This code is taken from https://github.com/sh1r0/caffe-android-lib

# USE_HDF5 := 0

 

# uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)

#    You should not set this flag if you will be reading LMDBs with any

#    possibility of simultaneous read and write

# ALLOW_LMDB_NOLOCK := 1

 

# Uncomment if you're using OpenCV 3

OPENCV_VERSION := 3

 

# To customize your choice of compiler, uncomment and set the following.

# N.B. the default for Linux is g++ and the default for OSX is clang++

# CUSTOM_CXX := g++

 

# CUDA directory contains bin/ and lib/ directories that we need.

CUDA_DIR := /usr/local/cuda

# On Ubuntu 14.04, if cuda tools are installed via

# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:

# CUDA_DIR := /usr

 

# CUDA architecture setting: going with all of them.

# For CUDA < 6.0, comment the *_50 through *_61 lines for compatibility.

# For CUDA < 8.0, comment the *_60 and *_61 lines for compatibility.

# For CUDA >= 9.0, comment the *_20 and *_21 lines for compatibility.

CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \

             -gencode arch=compute_20,code=sm_21 \

             -gencode arch=compute_30,code=sm_30 \

             -gencode arch=compute_35,code=sm_35 \

             -gencode arch=compute_50,code=sm_50 \

             -gencode arch=compute_52,code=sm_52 \

             -gencode arch=compute_60,code=sm_60 \

             -gencode arch=compute_61,code=sm_61 \

             -gencode arch=compute_61,code=compute_61

 

# BLAS choice:

# atlas for ATLAS (default)

# mkl for MKL

# open for OpenBlas

BLAS := atlas

# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.

# Leave commented to accept the defaults for your choice of BLAS

# (which should work)!

# BLAS_INCLUDE := /path/to/your/blas

# BLAS_LIB := /path/to/your/blas

 

# Homebrew puts openblas in a directory that is not on the standard search path

# BLAS_INCLUDE := $(shell brew --prefix openblas)/include

# BLAS_LIB := $(shell brew --prefix openblas)/lib

 

# This is required only if you will compile the matlab interface.

# MATLAB directory should contain the mex binary in /bin.

# MATLAB_DIR := /usr/local

# MATLAB_DIR := /Applications/MATLAB_R2012b.app

 

# NOTE: this is required only if you will compile the python interface.

# We need to be able to find Python.h and numpy/arrayobject.h.

# PYTHON_INCLUDE := /usr/include/python2.7 \

             /usr/lib/python2.7/dist-packages/numpy/core/include

# Anaconda Python distribution is quite popular. Include path:

# Verify anaconda location, sometimes it's in root.

# ANACONDA_HOME := $(HOME)/anaconda

# PYTHON_INCLUDE := $(ANACONDA_HOME)/include \

             # $(ANACONDA_HOME)/include/python2.7 \

             # $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include

 

# Uncomment to use Python 3 (default is Python 2)

PYTHON_LIBRARIES := boost_python3 python3.6m

PYTHON_INCLUDE := /home/user/anaconda3/envs/py365/include/python3.6m \

#                 /usr/lib/python3/dist-packages/numpy/core/include

/usr/lib/python3/dist-packages/numpy/core/include应该改为/home/user/anaconda3/envs/py365/lib/python3.6/site-packages/numpy/core/include,虽然在这里没有配置进来。

>>> import numpy

>>> numpy.__path__

['/home/user/anaconda3/envs/py365/lib/python3.6/site-packages/numpy']

>>> numpy.__version__

'1.13.1'

其中,dist-packages,系统自带python路径(需要在仔细解释);site-packages,用户安装python路径;/lib是内核级,/usr/lib是系统级,/usr/local/lib是用户级(unix system resource)。

Caffe-MobileNetSSD下ncnn推理实现-4_第1张图片

 

# We need to be able to find libpythonX.X.so or .dylib.

PYTHON_LIB := /home/user/anaconda3/envs/py365/lib # /usr/lib

# PYTHON_LIB := $(ANACONDA_HOME)/lib

()

# Homebrew installs numpy in a non standard path (keg only)

# PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include

# PYTHON_LIB += $(shell brew --prefix numpy)/lib

 

# Uncomment to support layers written in Python (will link against Python libs)

# WITH_PYTHON_LAYER := 1

 

# Whatever else you find you need goes here.

INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial

LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/i386-linux-gnu/hdf5/serial /usr/lib/x86_64-linux-gnu /usr/lib/x86_64-linux-gnu/hdf5/serial

 

# If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies

# INCLUDE_DIRS += $(shell brew --prefix)/include

# LIBRARY_DIRS += $(shell brew --prefix)/lib

 

# NCCL acceleration switch (uncomment to build with NCCL)

# https://github.com/NVIDIA/nccl (last tested version: v1.2.3-1+cuda8.0)

# USE_NCCL := 1

 

# Uncomment to use `pkg-config` to specify OpenCV library paths.

# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)

# USE_PKG_CONFIG := 1

 

# N.B. both build and distribute dirs are cleared on `make clean`

BUILD_DIR := build

DISTRIBUTE_DIR := distribute

 

# Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171

# DEBUG := 1

 

# The ID of the GPU that 'make runtest' will use to run unit tests.

TEST_GPUID := 0

 

# enable pretty build (comment to see full commands)

Q ?= @

 

再修改:Makefile,修改部分如下:

# Linux

ifeq ($(LINUX), 1)

        CXXFLAGS += -pthread -fPIC $(COMMON_FLAGS) $(WARNINGS) -std=c++11

        LINKFLAGS += -pthread -fPIC $(COMMON_FLAGS) $(WARNINGS) -std=c++11

      CXX ?= /usr/bin/g++

      GCCVERSION := $(shell $(CXX) -dumpversion | cut -f1,2 -d.)

      # older versions of gcc are too dumb to build boost with -Wuninitalized

      ifeq ($(shell echo | awk '{exit $(GCCVERSION) < 4.6;}'), 1)

             WARNINGS += -Wno-uninitialized

      endif

      # boost::thread is reasonably called boost_thread (compare OS X)

      # We will also explicitly add stdc++ to the link target.

      LIBRARIES += boost_thread stdc++

      VERSIONFLAGS += -Wl,-soname,$(DYNAMIC_VERSIONED_NAME_SHORT) -Wl,-rpath,$(ORIGIN)/../lib

endif

 

make all -j8

 

Caffe-MobileNetSSD下ncnn推理实现-4_第2张图片

make test -j8

Caffe-MobileNetSSD下ncnn推理实现-4_第3张图片

 

make runtest -j8

Caffe-MobileNetSSD下ncnn推理实现-4_第4张图片

 

验证caffe

./build/tools/caffe

Caffe-MobileNetSSD下ncnn推理实现-4_第5张图片

 

你可能感兴趣的:(移动端AI,Deep,Learning,Image,Algorithm)