- 向量数据库Faiss(Facebook AI Similarity Search)
shiming8879
数据库faiss人工智能
向量数据库Faiss(FacebookAISimilaritySearch)是FacebookAIResearch开发的一款高效且可扩展的相似性搜索和聚类库,专门用于处理大规模向量数据的搜索和检索任务。Faiss以其出色的性能和灵活性,在图像检索、文本搜索、推荐系统等多个领域得到了广泛应用。以下将详细介绍Faiss的搭建与使用过程,包括安装、基本使用、索引类型选择、性能优化及应用场景等方面。一、F
- 基于Hadoop的海量图像检索
usp1994
hadoopeclipse大数据
基于Hadoop的海量图像检索“MassiveImageRetrievalBasedonHadoop:AStudyinSoftwareEngineering”完整下载链接:基于Hadoop的海量图像检索文章目录基于Hadoop的海量图像检索摘要第一章引言1.1研究背景1.2研究意义1.3国内外研究现状1.4研究内容与方法1.5论文结构第二章相关技术介绍2.1Hadoop框架2.2分布式存储与计算2
- 向量数据库 Milvus:智能检索新时代
三余知行
「数智通识」「机器学习」数据库milvus智能检索高维数据检索AIGC维护
文章目录Milvus核心技术Milvus基本特点索引策略相似度计算图像检索演示Milvus基础维护环境搭建建立向量索引数据导入数据更新数据删除用户权限管理Milvus评估与调优性能评估调优技巧Milvus数据安全安全策略数据备份与恢复Milvus扩展性案例演示电影推荐在线广告投放结语随着人工智能和大数据技术的不断进步,向量数据库的应用场景愈发广泛。Milvus作为一款优秀的开源向量数据库,凭借其强
- 哈工大SCIR | 场景图生成简述
zenRRan
人工智能计算机视觉知识图谱
原创作者:梁家锋郑子豪王禹鑫孙一恒刘铭出处:哈工大SCIR进NLP群—>加入NLP交流群1引言场景图是一种结构表示,它将图片中的对象表示为节点,并将它们的关系表示为边。最近,场景图已成功应用于不同的视觉任务,例如图像检索[3]、目标检测、语义分割、图像合成[4]和高级视觉-语言任务(如图像字幕[1]或视觉问答[2]等)。它是一种具有丰富信息量的整体场景理解方法,可以连接视觉和自然语言领域之间巨大差
- CVPR 2023: CLIP for All Things Zero-Shot Sketch-Based Image Retrieval, Fine-Grained or Not
结构化文摘
sketchmacosui
我们使用以下6个分类标准对本文的研究选题进行分析:1.任务类型:图像检索:最常见任务,目标是检索与给定草图相似的图像。例如:[1,2,3,4,5,6,7,8,9,14,16,30,35,42,43,44,53,58,59,61,62,64,65,67,68,72,73]图像生成:相反,根据草图生成图像。例如:[11,33]目标检测:基于草图识别图像中的特定目标。例如:[13]2.输入模式:仅草图:
- 【机器视觉实验】机器视觉实验四——基于knn的场景图像检索、基于SVM的人脸图像识别
沐风—云端行者
深度学习实验支持向量机人工智能算法机器视觉计算机视觉机器学习图像识别
一、实验内容实验内容包含要进行什么实验,实验的目的是什么,实验用到的算法及其原理的简单介绍。(1)编程实现基于knn的场景图像检索a)至少实现三种特征组合进行检索;b)使用recall与precision分析不同特征组合对检索精度的影响。(2)实现基于SVM的人脸图像识别a)准备一张含有有自己照片的图片,并拍摄自己的人脸图片集;b)训练SVM人脸分类器c)实现基于滑动窗口的人脸检测算法;d)识别出
- 计算机设计大赛 图像检索算法
iuerfee
python
文章目录1前言2图像检索介绍(1)无监督图像检索(2)有监督图像检索3图像检索步骤4应用实例5最后1前言优质竞赛项目系列,今天要分享的是图像检索算法该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!更多资料,项目分享:https://gitee.com/dancheng-senior/postgraduate图像检索:是从一堆图片中找到与待匹配的图像相似的图片,就是以图找图。网络时代,随着各种社
- 2024年,AIGC赛道专利文献和软著大全
AI周红伟
AIGC人工智能机器学习chatgpt
一、周红伟-深度学习国际发明专利深度学习国际发明专利基于深度学习的图像检索方法及装置,专利公开公告号:CN107368614A。专利类型:发明公布。发明人:周红伟;李凯;任伟;李庆;郭奇杰;周杨;刘川郁二、机器学习算法发表文献Simulationmodelanddropletejectionperformanceofathermal-bubblemicroejector,HongweiZhou,A
- 探索图像检索:从理论到实战的应用
TechLead KrisChang
机器学习深度学习人工智能
目录一、引言二、图像检索技术概述图像检索的基本概念图像检索与文本检索的区别特征提取技术相似度计算索引技术三、图像检索技术代码示例图像特征提取示例相似度计算索引技术四、图像搜索流程架构数据采集与预处理特征提取相似度计算与排名结果呈现与优化五、实际应用图像检索在电子商务领域的应用图像检索在社交媒体中的应用图像检索在云存储服务中的应用本文深入探讨了图像检索技术及其在主流APP中的应用,涵盖了特征提取、相
- 【GitHub项目推荐--全球首个开源图像识别系统】【转载】
旅之灵夫
GitHub项目推荐github
你知道人脸识别、商品识别、车辆识别,以图搜图乃至自动驾驶,背后的技术是什么嘛?并不是图像分类、目标检测这些东西,而是综合使用目标检测、图像分类、度量学习、图像检索的【通用图像识别系统】…度量学习是啥?图像检索是啥?通用图像识别系统又是啥?好奇之余,老逛突然发现了一个通用图像识别系统快速搭建神器!GitHub地址:https://github.com/PaddlePaddle/PaddleClas那
- 基于内容的图像web检索系统
乐心唯帅
计算机视觉深度学习
题目:基于内容的图像在线检索系统简介:基于内容的图像在线检索系统(ContentBasedOnlineImageRetrieval,以下简称CBOIR),是计算机视觉领域中关注大规模数字图像内容检索的研究分支。典型的CBOIR系统,允许用户在线输入一张图像,在远程图像数据库中查找具有相同或相似内容的其它图片。要求:本实训完成的系统要求实现基于视觉特征的在线图像检索。该项目的实训内容主要包括:1.搭
- 半监督学习 - 三元组学习(Triplet Learning)
草明
数据结构与算法学习机器学习人工智能
什么是机器学习三元组学习(TripletLearning)是半监督学习中一种用于学习有用表示的方法。它通常用于学习数据中的相似性关系,尤其在人脸识别、图像检索等领域中得到广泛应用。三元组学习是通过构造三元组(triplet)来训练模型,每个三元组包含一个锚点样本(anchorsample)、一个正样本(positivesample)和一个负样本(negativesample)。三元组的构造锚点样本
- [2019CVPR论文笔记]Doodle to Search Practical Zero-Shot Sketch-based Image Retrieval
qq_44932092
CVPR2019图像检索图像检索CVPR2019深度学习few-shot
摘要文章地址:http[https://arxiv.org/pdf/1904.03451v1.pdf]在本文中,我们研究了基于零样本的草图图像检索(ZS-SBIR)的问题,其中人类草图被用作查询以从不可见的类别中检索照片。我们通过提出一种新颖的ZS-SBIR场景来进一步推进现有技术,该场景代表了其实际应用中的一步。新设置独特地认识到实际ZS-SBIR的两个重要但经常被忽视的挑战,(1)业余草图和照
- 图像处理中常用的距离
图灵追慕者
图像处理图像处理欧氏距离常用距离距离的类型距离度量
说明在图像处理中,常用的距离度量用于衡量两个向量或特征之间的差异或相似性。以下是一些常用的距离度量及其使用说明和应用场景:欧氏距离(EuclideanDistance):欧氏距离是最常用的距离度量,用于衡量两个向量之间的几何距离。它可以用于图像检索、目标识别和图像聚类等任务。曼哈顿距离(ManhattanDistance):曼哈顿距离是指两个向量之间的每个维度差的绝对值之和。它适用于特征具有明显方
- 无代码DIY图像检索
colorknight
低代码人工智能HuggingFace大模型MilvusEmbedding图像检索
软件环境准备可参见《HuggingFists-低代码玩转LLMRAG-准备篇》中的HuggingFists安装及Milvus安装。流程环境准备图片准备进入HuggingFists内置的文件系统,数据源->文件系统->sengee_fs_settings_201创建Image文件夹将事先准备的多张相同或不同种类的图片上传到Image目录下。如下图:HuggingFace账号准备HuggingFist
- 遥感影像-语义分割数据集:WHDLD数据集详细介绍及训练样本处理流程
ly_0624
语义分割数据集深度学习人工智能图像处理数据分析计算机视觉
原始数据集详情简介:WHDLD是一个密集的标签数据集,可用于多标签任务,例如遥感图像检索(RSIR)和分类,以及其他基于像素的任务,例如语义分割(在遥感中也称为分类)。KeyValue卫星类型GaoFen-1、ZiYuan-3覆盖区域未知场景未知分辨率2m数量4940张单张尺寸256*256原始影像位深8位标签图片位深8位原始影像通道数三通道标签图片通道数单通道标签类别对照表像素值类别名(英文)类
- 灰度共生矩阵纹理特征提取matlab,灰度共生矩阵纹理特征提取的Matlab实现
陆牙
收稿日期:2012-03-20;修回日期:2012-06-24基金项目:国家“十一五”计划课题(FIB070335-B8-04)作者简介:焦蓬蓬(1981-),女,硕士,讲师,研究方向为数字信号处理。灰度共生矩阵纹理特征提取的Matlab实现焦蓬蓬,郭依正,刘丽娟,卫星(南京师范大学泰州学院,江苏泰州225300)摘要:图像的特征提取是图像的识别和分类、基于内容的图像检索、图像数据挖掘等研究内容的
- 简易机器学习笔记(八)关于经典的图像分类问题-常见经典神经网络LeNet
Leventure_轩先生
不涉及理论的简易机器学习笔记机器学习笔记分类
前言图像分类是根据图像的语义信息对不同类别图像进行区分,是计算机视觉的核心,是物体检测、图像分割、物体跟踪、行为分析、人脸识别等其他高层次视觉任务的基础。图像分类在许多领域都有着广泛的应用,如:安防领域的人脸识别和智能视频分析等,交通领域的交通场景识别,互联网领域基于内容的图像检索和相册自动归类,医学领域的图像识别等。这里简单讲讲LeNet我的推荐是可以看看这个视频,可视化的查看卷积神经网络是如何
- [2015 Springer] Local Image Descriptor: Modern Approaches——1 Introduction
AllisWell_WP
计算机视觉图像处理书翻译计算机视觉图像处理特征提取描述符翻译
转载请注明链接:有问题请及时联系博主:Alliswell_WP持续更新中…翻译本地图像描述符:现代方法——作者:BinFan,ZhenhuaWang,FuchaoWu有关该系列的更多信息,请访问http://www.springer.com/series/10028前言1在过去的15年中,特征点描述符已成为计算机视觉社区中必不可少的工具。它们是从图像检索到多图像立体匹配以及从表面重建到图像增强等应
- 互联网加竞赛 python图像检索系统设计与实现
Mr.D学长
pythonjava
0前言优质竞赛项目系列,今天要分享的是python图像检索系统设计与实现学长这里给一个题目综合评分(每项满分5分)难度系数:3分工作量:3分创新点:4分该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!更多资料,项目分享:https://gitee.com/dancheng-senior/postgraduate1课题简介图像检索:是从一堆图片中找到与待匹配的图像相似的图片,就是以图找图。网络时
- 竞赛保研 python图像检索系统设计与实现
iuerfee
python
0前言优质竞赛项目系列,今天要分享的是python图像检索系统设计与实现学长这里给一个题目综合评分(每项满分5分)难度系数:3分工作量:3分创新点:4分该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!更多资料,项目分享:https://gitee.com/dancheng-senior/postgraduate1课题简介图像检索:是从一堆图片中找到与待匹配的图像相似的图片,就是以图找图。网络时
- 新零售场景(图像检索、识别,分类)sku级别数据集
Funny_AI_LAB
数据汇总计算机视觉目标检测分类零售
1.AiProducts-Challenge(阿里2020)下载地址:2020-AiProducts-Challenge-dataset数据介绍:Large-scaleProductRecognition赛题与数据-天池大赛-阿里云天池该数据集包含近300万张图片,涵盖5万个SKU级商品类别。1st-plan:1st__WinnerSolutionforAliProductsChallengeLa
- 遥感图像之多模态检索AMFMN(支持关键词、句子对图像的检索)论文阅读、环境搭建、模型测试、模型训练
qq_41627642
深度学习多模态论文阅读计算机视觉人工智能
一、论文阅读1、摘要背景遥感跨模态文本图像检索以其灵活的输入和高效的查询等优点受到了广泛的关注。然而,传统的方法忽略了遥感图像多尺度和目标冗余的特点,导致检索精度下降。为了解决遥感多模态检索任务中的多尺度稀缺性和目标冗余问题,提出了一种新的非对称多模态特征匹配网络(AMFMN)。该模型可适应多尺度特征输入,支持多源检索方法,并能动态过滤冗余特征。AMFMN采用多尺度视觉自注意(MVSA)模块提取R
- 在Python中探索图像相似性方法
小北的北
python开发语言
在一个充斥着图像的世界里,衡量和量化图像之间相似性的能力已经成为一项关键任务。无论是用于图像检索、内容推荐还是视觉搜索,图像相似性方法在现代应用中起着至关重要的作用。幸运的是,Python提供了大量工具和库,使得开发人员和研究人员能够轻松地探索和实现这些方法。在这篇博客中,我们将深入探讨各种图像相似性技术,并演示如何使用Python实现它们。理解图像相似性图像相似性可以被看作是两幅图像在视觉内容方
- 浅析行人重识别
Shirleybebe
行人重识别在此先给出官方解释: 行人重识别(Personre-identification)也称行人再识别,是利用计算机视觉技术判断图像或者视频序列中是否存在特定行人的技术。广泛被认为是一个图像检索的子问题。给定一个监控行人图像,检索跨设备下的该行人图像。旨在弥补固定的摄像头的视觉局限,并可与行人检测/行人跟踪技术相结合,可广泛应用于智能视频监控、智能安保等领域。给定一个监控行人图像:给定一个希
- akaze特征匹配怎么去掉不合适的点_自动驾驶汽车视觉- 图像特征提取与匹配技术
weixin_39890102
opencv4图像特征匹配opencv纹理特征提取sift特征提取图像特征匹配opencv4基于fpga的vga图像显示
FeaturedetectionandmatchingGithub:https://github.com/williamhyin/SFND_2D_Feature_TrackingEmail:
[email protected]特征提取和匹配是许多计算机视觉应用中的一个重要任务,广泛运用在运动结构、图像检索、目标检测等领域。每个计算机视觉初学者最先了解的特征检测器几乎都是1988年发布的H
- 如何高效、精准地进行图片搜索?看看轻量化视觉预训练模型
AI科技大本营
神经网络大数据算法编程语言python
来源|微软研究院AI头条编者按:你是否有过图像检索的烦恼?或是难以在海量化的图像中准确地找到所需图像,或是在基于文本的检索中得到差强人意的结果。对于这个难题,微软亚洲研究院和微软云计算与人工智能事业部的研究人员对轻量化视觉模型进行了深入研究,并提出了一系列视觉预训练模型的设计和压缩方法,实现了视觉Transformer的轻量化部署需求。目前该方法和模型已成功应用于微软必应搜索引擎,实现了百亿图片的
- Image Caption:图像字幕生成
于建民
技术博客ImageCaptionRNN图像注释图像描述场景理解
前言图像处理与自然语言处理的结合,给图像加字幕或者描述。应用前景非常广,比如早教,图像检索,盲人导航等。图像注释问题的通用解法非常接近于Encoder-Decoder结构,下面就几种方法作简单总结。m-RNNMao这篇2015-paper,根据输入语句和图片,为图片生成字幕;以DeepRNN处理语句,用CNN处理图片。基本思路:直接将图像表示和词向量以及隐向量作为多模判断的输入。左侧是简单RNN结
- 行人重识别-REID
椒椒。
计算机视觉深度学习人工智能
行人重识别-REID一、REID二、为什么使用REID三、REID应用场景四、REID研究形式五、REID存在的挑战一、REID行人重识别-REID(personre-identification)也叫做行人再识别技术。利用计算机视觉技术判断图像或者视频序列中是否存在特定行人的技术。广泛被认为是一个图像检索的子问题。给定一个监控行人图像,检索跨设备下的该行人图像。如下图所示:一个区域有多个摄像头拍
- 汽车虚拟仿真视频数据理解--CLIP模型原理
无盐薯片
比赛神经网络python人工智能
CLIP模型原理CLIP的全称是ContrastiveLanguage-ImagePre-Training,中文是对比语言-图像预训练,是一个预训练模型,简称为CLIP。该模型是OpenAI在2021年发布的,最初用于匹配图像和文本的预训练神经网络模型,这个任务在多模态领域比较常见,可以用于文本图像检索,CLIP是近年来在多模态研究领域的经典之作。该模型大量的成对互联网数据进行预训练,在很多任务表
- Spring4.1新特性——Spring MVC增强
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- mysql 性能查询优化
annan211
javasql优化mysql应用服务器
1 时间到底花在哪了?
mysql在执行查询的时候需要执行一系列的子任务,这些子任务包含了整个查询周期最重要的阶段,这其中包含了大量为了
检索数据列到存储引擎的调用以及调用后的数据处理,包括排序、分组等。在完成这些任务的时候,查询需要在不同的地方
花费时间,包括网络、cpu计算、生成统计信息和执行计划、锁等待等。尤其是向底层存储引擎检索数据的调用操作。这些调用需要在内存操
- windows系统配置
cherishLC
windows
删除Hiberfil.sys :使用命令powercfg -h off 关闭休眠功能即可:
http://jingyan.baidu.com/article/f3ad7d0fc0992e09c2345b51.html
类似的还有pagefile.sys
msconfig 配置启动项
shutdown 定时关机
ipconfig 查看网络配置
ipconfig /flushdns
- 人体的排毒时间
Array_06
工作
========================
|| 人体的排毒时间是什么时候?||
========================
转载于:
http://zhidao.baidu.com/link?url=ibaGlicVslAQhVdWWVevU4TMjhiKaNBWCpZ1NS6igCQ78EkNJZFsEjCjl3T5EdXU9SaPg04bh8MbY1bR
- ZooKeeper
cugfy
zookeeper
Zookeeper是一个高性能,分布式的,开源分布式应用协调服务。它提供了简单原始的功能,分布式应用可以基于它实现更高级的服务,比如同步, 配置管理,集群管理,名空间。它被设计为易于编程,使用文件系统目录树作为数据模型。服务端跑在java上,提供java和C的客户端API。 Zookeeper是Google的Chubby一个开源的实现,是高有效和可靠的协同工作系统,Zookeeper能够用来lea
- 网络爬虫的乱码处理
随意而生
爬虫网络
下边简单总结下关于网络爬虫的乱码处理。注意,这里不仅是中文乱码,还包括一些如日文、韩文 、俄文、藏文之类的乱码处理,因为他们的解决方式 是一致的,故在此统一说明。 网络爬虫,有两种选择,一是选择nutch、hetriex,二是自写爬虫,两者在处理乱码时,原理是一致的,但前者处理乱码时,要看懂源码后进行修改才可以,所以要废劲一些;而后者更自由方便,可以在编码处理
- Xcode常用快捷键
张亚雄
xcode
一、总结的常用命令:
隐藏xcode command+h
退出xcode command+q
关闭窗口 command+w
关闭所有窗口 command+option+w
关闭当前
- mongoDB索引操作
adminjun
mongodb索引
一、索引基础: MongoDB的索引几乎与传统的关系型数据库一模一样,这其中也包括一些基本的优化技巧。下面是创建索引的命令: > db.test.ensureIndex({"username":1}) 可以通过下面的名称查看索引是否已经成功建立: &nbs
- 成都软件园实习那些话
aijuans
成都 软件园 实习
无聊之中,翻了一下日志,发现上一篇经历是很久以前的事了,悔过~~
断断续续离开了学校快一年了,习惯了那里一天天的幼稚、成长的环境,到这里有点与世隔绝的感觉。不过还好,那是刚到这里时的想法,现在感觉在这挺好,不管怎么样,最要感谢的还是老师能给这么好的一次催化成长的机会,在这里确实看到了好多好多能想到或想不到的东西。
都说在外面和学校相比最明显的差距就是与人相处比较困难,因为在外面每个人都
- Linux下FTP服务器安装及配置
ayaoxinchao
linuxFTP服务器vsftp
检测是否安装了FTP
[root@localhost ~]# rpm -q vsftpd
如果未安装:package vsftpd is not installed 安装了则显示:vsftpd-2.0.5-28.el5累死的版本信息
安装FTP
运行yum install vsftpd命令,如[root@localhost ~]# yum install vsf
- 使用mongo-java-driver获取文档id和查找文档
BigBird2012
driver
注:本文所有代码都使用的mongo-java-driver实现。
在MongoDB中,一个集合(collection)在概念上就类似我们SQL数据库中的表(Table),这个集合包含了一系列文档(document)。一个DBObject对象表示我们想添加到集合(collection)中的一个文档(document),MongoDB会自动为我们创建的每个文档添加一个id,这个id在
- JSONObject以及json串
bijian1013
jsonJSONObject
一.JAR包简介
要使程序可以运行必须引入JSON-lib包,JSON-lib包同时依赖于以下的JAR包:
1.commons-lang-2.0.jar
2.commons-beanutils-1.7.0.jar
3.commons-collections-3.1.jar
&n
- [Zookeeper学习笔记之三]Zookeeper实例创建和会话建立的异步特性
bit1129
zookeeper
为了说明问题,看个简单的代码,
import org.apache.zookeeper.*;
import java.io.IOException;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ThreadLocal
- 【Scala十二】Scala核心六:Trait
bit1129
scala
Traits are a fundamental unit of code reuse in Scala. A trait encapsulates method and field definitions, which can then be reused by mixing them into classes. Unlike class inheritance, in which each c
- weblogic version 10.3破解
ronin47
weblogic
版本:WebLogic Server 10.3
说明:%DOMAIN_HOME%:指WebLogic Server 域(Domain)目录
例如我的做测试的域的根目录 DOMAIN_HOME=D:/Weblogic/Middleware/user_projects/domains/base_domain
1.为了保证操作安全,备份%DOMAIN_HOME%/security/Defa
- 求第n个斐波那契数
BrokenDreams
今天看到群友发的一个问题:写一个小程序打印第n个斐波那契数。
自己试了下,搞了好久。。。基础要加强了。
&nbs
- 读《研磨设计模式》-代码笔记-访问者模式-Visitor
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
interface IVisitor {
//第二次分派,Visitor调用Element
void visitConcret
- MatConvNet的excise 3改为网络配置文件形式
cherishLC
matlab
MatConvNet为vlFeat作者写的matlab下的卷积神经网络工具包,可以使用GPU。
主页:
http://www.vlfeat.org/matconvnet/
教程:
http://www.robots.ox.ac.uk/~vgg/practicals/cnn/index.html
注意:需要下载新版的MatConvNet替换掉教程中工具包中的matconvnet:
http
- ZK Timeout再讨论
chenchao051
zookeepertimeouthbase
http://crazyjvm.iteye.com/blog/1693757 文中提到相关超时问题,但是又出现了一个问题,我把min和max都设置成了180000,但是仍然出现了以下的异常信息:
Client session timed out, have not heard from server in 154339ms for sessionid 0x13a3f7732340003
- CASE WHEN 用法介绍
daizj
sqlgroup bycase when
CASE WHEN 用法介绍
1. CASE WHEN 表达式有两种形式
--简单Case函数
CASE sex
WHEN '1' THEN '男'
WHEN '2' THEN '女'
ELSE '其他' END
--Case搜索函数
CASE
WHEN sex = '1' THEN
- PHP技巧汇总:提高PHP性能的53个技巧
dcj3sjt126com
PHP
PHP技巧汇总:提高PHP性能的53个技巧 用单引号代替双引号来包含字符串,这样做会更快一些。因为PHP会在双引号包围的字符串中搜寻变量, 单引号则不会,注意:只有echo能这么做,它是一种可以把多个字符串当作参数的函数译注: PHP手册中说echo是语言结构,不是真正的函数,故把函数加上了双引号)。 1、如果能将类的方法定义成static,就尽量定义成static,它的速度会提升将近4倍
- Yii框架中CGridView的使用方法以及详细示例
dcj3sjt126com
yii
CGridView显示一个数据项的列表中的一个表。
表中的每一行代表一个数据项的数据,和一个列通常代表一个属性的物品(一些列可能对应于复杂的表达式的属性或静态文本)。 CGridView既支持排序和分页的数据项。排序和分页可以在AJAX模式或正常的页面请求。使用CGridView的一个好处是,当用户浏览器禁用JavaScript,排序和分页自动退化普通页面请求和仍然正常运行。
实例代码如下:
- Maven项目打包成可执行Jar文件
dyy_gusi
assembly
Maven项目打包成可执行Jar文件
在使用Maven完成项目以后,如果是需要打包成可执行的Jar文件,我们通过eclipse的导出很麻烦,还得指定入口文件的位置,还得说明依赖的jar包,既然都使用Maven了,很重要的一个目的就是让这些繁琐的操作简单。我们可以通过插件完成这项工作,使用assembly插件。具体使用方式如下:
1、在项目中加入插件的依赖:
<plugin>
- php常见错误
geeksun
PHP
1. kevent() reported that connect() failed (61: Connection refused) while connecting to upstream, client: 127.0.0.1, server: localhost, request: "GET / HTTP/1.1", upstream: "fastc
- 修改linux的用户名
hongtoushizi
linuxchange password
Change Linux Username
更改Linux用户名,需要修改4个系统的文件:
/etc/passwd
/etc/shadow
/etc/group
/etc/gshadow
古老/传统的方法是使用vi去直接修改,但是这有安全隐患(具体可自己搜一下),所以后来改成使用这些命令去代替:
vipw
vipw -s
vigr
vigr -s
具体的操作顺
- 第五章 常用Lua开发库1-redis、mysql、http客户端
jinnianshilongnian
nginxlua
对于开发来说需要有好的生态开发库来辅助我们快速开发,而Lua中也有大多数我们需要的第三方开发库如Redis、Memcached、Mysql、Http客户端、JSON、模板引擎等。
一些常见的Lua库可以在github上搜索,https://github.com/search?utf8=%E2%9C%93&q=lua+resty。
Redis客户端
lua-resty-r
- zkClient 监控机制实现
liyonghui160com
zkClient 监控机制实现
直接使用zk的api实现业务功能比较繁琐。因为要处理session loss,session expire等异常,在发生这些异常后进行重连。又因为ZK的watcher是一次性的,如果要基于wather实现发布/订阅模式,还要自己包装一下,将一次性订阅包装成持久订阅。另外如果要使用抽象级别更高的功能,比如分布式锁,leader选举
- 在Mysql 众多表中查找一个表名或者字段名的 SQL 语句
pda158
mysql
在Mysql 众多表中查找一个表名或者字段名的 SQL 语句:
方法一:SELECT table_name, column_name from information_schema.columns WHERE column_name LIKE 'Name';
方法二:SELECT column_name from information_schema.colum
- 程序员对英语的依赖
Smile.zeng
英语程序猿
1、程序员最基本的技能,至少要能写得出代码,当我们还在为建立类的时候思考用什么单词发牢骚的时候,英语与别人的差距就直接表现出来咯。
2、程序员最起码能认识开发工具里的英语单词,不然怎么知道使用这些开发工具。
3、进阶一点,就是能读懂别人的代码,有利于我们学习人家的思路和技术。
4、写的程序至少能有一定的可读性,至少要人别人能懂吧...
以上一些问题,充分说明了英语对程序猿的重要性。骚年
- Oracle学习笔记(8) 使用PLSQL编写触发器
vipbooks
oraclesql编程活动Access
时间过得真快啊,转眼就到了Oracle学习笔记的最后个章节了,通过前面七章的学习大家应该对Oracle编程有了一定了了解了吧,这东东如果一段时间不用很快就会忘记了,所以我会把自己学习过的东西做好详细的笔记,用到的时候可以随时查找,马上上手!希望这些笔记能对大家有些帮助!
这是第八章的学习笔记,学习完第七章的子程序和包之后