【Hadoop】数据序列化系统Avro

  • Avro简介
    • schema
  • 文件组成
    • Header与Datablock声明代码
    • 测试代码
  • 序列化与反序列化
    • specific
    • generic
  • 参考资料

1. Avro简介

Avro是由Doug Cutting(Hadoop之父)创建的数据序列化系统,旨在解决Writeable类型的不足:缺乏语言的可移植性。为了支持跨语言,Avro的schema与语言的模式无关。有关Avro的更多特性请参看官方文档 1。

Avro文件的读写是依据schema而进行的。通常情况下,Avro的schema是用JSON编写,而数据部分则是二进制格式编码,并采用压缩算法对数据进行压缩,以便减少传输量。

schema

schema中数据字段的类型包括两种

  • 原生类型(primitive types): null, boolean, int, long, float, double, bytes, and string
  • 复杂类型(complex types): record, enum, array, map, union, and fixed

复杂类型比较常用的record。这里用[2]中twitter.avro文件为例,打开文件后,文件头如下:

Objavro.codecnullavro.schemaò{“type”:”record”,”name”:”twitter_schema”,”namespace”:”com.miguno.avro”,”fields”:[{“name”:”username”,”type”:”string”,”doc”:”Name of the user account on Twitter.com”},{“name”:”tweet”,”type”:”string”,”doc”:”The content of the user’s Twitter message”},{“name”:”timestamp”,”type”:”long”,”doc”:”Unix epoch time in milliseconds”}],”doc:”:”A basic schema for storing Twitter messages”}

将schema格式化之后

{
    "type": "record",
    "name": "twitter_schema",
    "namespace": "com.miguno.avro",
    "fields": [
        {
            "name": "username", "type": "string",
            "doc": "Name of the user account on Twitter.com"
        },
        {
            "name": "tweet", "type": "string",
            "doc": "The content of the user's Twitter message"
        },
        {
            "name": "timestamp", "type": "long",
            "doc": "Unix epoch time in milliseconds"
        }
    ],
    "doc:": "A basic schema fostoring Twitter messages"
}

其中,name是该JSON串的名字,type是指明name的类型,doc是对该name更为详细的说明。

2. 文件组成

3中的图对Avro文件进行详细地描述,一个文件由header与多个data block组成。header主要由 MetaDatas与16位 sync marker组成,MetaDatas中的信息包含 codec与schema;codec是data block中的数据采用的压缩方式,为 null(不压缩)或者是 deflate。deflate算法是gzip所采用的压缩算法,就我自己感觉而言压缩比在6倍以上(具体还没研究过)。

Avro文件

其实每个data block间都会间隔一个sync marker,具体参看4。sync marker是为了用于mapReduce阶段时文件分割与同步;此外Avro本身是为了mapReduce而设计的。

Header与Datablock声明代码

Header与Datablock声明代码在Avro源码org.apache.avro.file.DataFileStream.java中给出。

//org.apache.avro.file.DataFileStream.java

  public static final class Header {
    Schema schema;
    Mapbyte[]> meta = new HashMapbyte[]>();
    private transient List metaKeyList = new ArrayList();
    byte[] sync = new byte[DataFileConstants.SYNC_SIZE]; //byte[16]
    private Header() {}
  }

  static class DataBlock {
    private byte[] data;
    private long numEntries;
    private int blockSize;
    private int offset = 0;
    private boolean flushOnWrite = true;
    private DataBlock(long numEntries, int blockSize) {
      this.data = new byte[blockSize];
      this.numEntries = numEntries;
      this.blockSize = blockSize;
    }

测试代码

下面给出是关于Header与DataBlock的测试代码。得到schema的方式有两种:

  • getSchema()直接返回Header.schema;
  • getMetaString(“avro.schema”)从Map meta中的得到byte类型的schema然后转成String。

Map meta的keySet为[“avro.codec”, “avro.schema”]。

DataFileReader reader =
                  new DataFileReader(new FsInput(new Path("twitter.avro"), new Configuration()),
                                           new GenericDatumReader());
//print schema
System.out.println(reader.getSchema().toString(true));

//print meta 
List metaKeyList = reader.getMetaKeys();
System.out.println(metaKeyList.toString());
System.out.println(reader.getMetaString("avro.codec"));
System.out.println(reader.getMetaString("avro.schema"));

//print blockount
reader.getBlockCount();

//print the data in data block
System.out.println(reader.next());

3. 序列化与反序列化

官网上给出了两种序列化方式:specific与generic。

specific

specific方式是根据所生成的User类,提取出schema来进行Avro的解析。

// Serialize user1, user2 and user3 to disk
DatumWriter userDatumWriter = new SpecificDatumWriter(User.class);
DataFileWriter dataFileWriter = new DataFileWriter(userDatumWriter);
dataFileWriter.create(user1.getSchema(), new File("users.avro"));
dataFileWriter.append(user1);
dataFileWriter.append(user2);
dataFileWriter.append(user3);
dataFileWriter.close();

// Deserialize Users from disk
DatumReader userDatumReader = new SpecificDatumReader(User.class);
DataFileReader dataFileReader = new DataFileReader(file, userDatumReader);
User user = null;
while (dataFileReader.hasNext()) {
// Reuse user object by passing it to next(). This saves us from
// allocating and garbage collecting many objects for files with
// many items.
user = dataFileReader.next(user);
System.out.println(user);
}

generic

generic方式是预先生成了一个schema,然后再根据其解析。因为Avro文件会将schema写在文件头,所以generic解析方式更为常见。

GenericRecord user1 = new GenericData.Record(schema);
user1.put("name", "Alyssa");
user1.put("favorite_number", 256);
// Leave favorite color null

GenericRecord user2 = new GenericData.Record(schema);
user2.put("name", "Ben");
user2.put("favorite_number", 7);
user2.put("favorite_color", "red");

// Serialize user1 and user2 to disk
File file = new File("users.avro");
DatumWriter datumWriter = new GenericDatumWriter(schema);
DataFileWriter dataFileWriter = new DataFileWriter(datumWriter);
dataFileWriter.create(schema, file);
dataFileWriter.append(user1);
dataFileWriter.append(user2);
dataFileWriter.close();

// Deserialize users from disk
DatumReader datumReader = new GenericDatumReader(schema);
DataFileReader dataFileReader = new DataFileReader(file, datumReader);
GenericRecord user = null;
while (dataFileReader.hasNext()) {
    // Reuse user object by passing it to next(). This saves us from
    // allocating and garbage collecting many objects for files with
    // many items.
    user = dataFileReader.next(user);
    System.out.println(user);
}

avro-tools的jar包提供了对Avro文件丰富的操作,包括对Avro文件进行切割,以用于做测试数据。

Available tools:
      compile  Generates Java code for the given schema.
       concat  Concatenates avro files without re-compressing.
   fragtojson  Renders a binary-encoded Avro datum as JSON.
     fromjson  Reads JSON records and writes an Avro data file.
     fromtext  Imports a text file into an avro data file.
      getmeta  Prints out the metadata of an Avro data file.
    getschema  Prints out schema of an Avro data file.
          idl  Generates a JSON schema from an Avro IDL file
       induce  Induce schema/protocol from Java class/interface via reflection.
   jsontofrag  Renders a JSON-encoded Avro datum as binary.
      recodec  Alters the codec of a data file.
  rpcprotocol  Output the protocol of a RPC service
   rpcreceive  Opens an RPC Server and listens for one message.
      rpcsend  Sends a single RPC message.
       tether  Run a tethered mapreduce job.
       tojson  Dumps an Avro data file as JSON, one record per line.
       totext  Converts an Avro data file to a text file.
  trevni_meta  Dumps a Trevni file's metadata as JSON.
trevni_random  Create a Trevni file filled with random instances of a schema.
trevni_tojson  Dumps a Trevni file as JSON.

参考资料


  1. Apache Avro documentation. ↩
  2. miguno, avro-cli-examples. ↩
  3. 江志伟, 浅析Hadoop文件格式. ↩
  4. guibin, AVRO文件结构分析. ↩

你可能感兴趣的:(hadoop)