【Hadoop】Avro源码分析(二):反序列化之Generic

  • 文件读取
    • 类图继承
    • DataFileStream
    • DataFileReader
  • Header与Data Block读取
    • 初始化Header
    • Data Block读取

本文着重研究avro反序列化的Generic方式,先从下面这段读取avro文件(反序列化)的代码开始讲起。

File file = new File("e://twitter.avro");
DatumReader datumReader = new GenericDatumReader();
DataFileReader dataFileReader = new DataFileReader(file, datumReader);
GenericRecord datum = null;
while(dataFileReader.hasNext()) {
  datum = dataFileReader.next(datum);
  System.out.println(datum);
}

1. 文件读取

类图继承

DataFileReader是继承DataFileStream实现FileReader接口,

public class DataFileReader<D>
  extends DataFileStream<D> implements FileReader<D>
类图如下:
【Hadoop】Avro源码分析(二):反序列化之Generic_第1张图片

DataFileStream

DataFileStream的字段:

private DatumReader reader;
private long blockSize;
private boolean availableBlock = false;
private Header header;

/** Decoder on raw input stream.  (Used for metadata.) */
BinaryDecoder vin;
/** Secondary decoder, for datums.
 *  (Different than vin for block segments.) */
BinaryDecoder datumIn = null;

ByteBuffer blockBuffer;
long blockCount;                              // # entries in block
long blockRemaining;                          // # entries remaining in block
byte[] syncBuffer = new byte[DataFileConstants.SYNC_SIZE];
private Codec codec;

其中,vin用来读取header,datumIn用来读取data block的datum。

DataFileReader

DataFileReader的构造器通过读入File返回SeekableInputStream、DatumReader进行构造。

/** Construct a reader for a file. */
public DataFileReader(File file, DatumReader reader) throws IOException {
  this(new SeekableFileInput(file), reader);
}

/** Construct a reader for a file. */
public DataFileReader(SeekableInput sin, DatumReader reader)
  throws IOException {
  super(reader);
  this.sin = new SeekableInputStream(sin);
  initialize(this.sin);
  blockFinished();
}

其中,initialize()是对header进行初始化,详细介绍见下。SeekableInput是接口,

class SeekableFileInput extends FileInputStream 
    implements SeekableInput 

static class SeekableInputStream extends InputStream 
    implements SeekableInput

其继承关系:


【Hadoop】Avro源码分析(二):反序列化之Generic_第2张图片

2. Header与Data Block读取

在前一篇中提到,avro文件由header与多个data block组成。

初始化Header

读取文件后,初始化header是在DataFileStream的initialize()方法中实现。

/** Initialize the stream by reading from its head. */
void initialize(InputStream in) throws IOException {
  this.header = new Header();
  this.vin = DecoderFactory.get().binaryDecoder(in, vin);
  byte[] magic = new byte[DataFileConstants.MAGIC.length];
  try {
    vin.readFixed(magic);                         // read magic
  } catch (IOException e) {
    throw new IOException("Not a data file.");
  }
  if (!Arrays.equals(DataFileConstants.MAGIC, magic))
    throw new IOException("Not a data file.");

  long l = vin.readMapStart();                  // read meta data
  if (l > 0) {
    do {
      for (long i = 0; i < l; i++) {
        String key = vin.readString(null).toString();
        ByteBuffer value = vin.readBytes(null);
        byte[] bb = new byte[value.remaining()];
        value.get(bb);
        header.meta.put(key, bb);
        header.metaKeyList.add(key);
      }
    } while ((l = vin.mapNext()) != 0);
  }
  vin.readFixed(header.sync);                          // read sync

  // finalize the header
  header.metaKeyList = Collections.unmodifiableList(header.metaKeyList);
  header.schema = Schema.parse(getMetaString(DataFileConstants.SCHEMA),false);
  this.codec = resolveCodec();
  reader.setSchema(header.schema);
}

Data Block读取

类GenericDatumReader实现接口DatumReader,类图:


【Hadoop】Avro源码分析(二):反序列化之Generic_第3张图片

GenericDatumReader的字段如下:

private final GenericData data;
private Schema actual;
private Schema expected;

private ResolvingDecoder creatorResolver = null;
private final Thread creator;

接下来,且看dataFileReader.next(datum)是如何读取data block的datum?在DataFileStream中next()通过调用DatumReader.read()来读取datum:

public D next(D reuse) throws IOException {
  if (!hasNext())
    throw new NoSuchElementException();
  D result = reader.read(reuse, datumIn);
  if (0 == --blockRemaining) {
    blockFinished();
  }
  return result;
}

在上面initialize()的reader.setSchema(header.schema);中已将DatumReader的actual与expected设置成了header.schema。看看GenericDatumReader.read()的实现:

@Override
@SuppressWarnings("unchecked")
public D read(D reuse, Decoder in) throws IOException {
  ResolvingDecoder resolver = getResolver(actual, expected);
  resolver.configure(in);
  D result = (D) read(reuse, expected, resolver);
  resolver.drain();
  return result;
}

/** Called to read data.*/
protected Object read(Object old, Schema expected,
    ResolvingDecoder in) throws IOException {
  Object datum = readWithoutConversion(old, expected, in);
  LogicalType logicalType = expected.getLogicalType();
  if (logicalType != null) {
    Conversion conversion = getData().getConversionFor(logicalType);
    if (conversion != null) {
      return convert(datum, expected, logicalType, conversion);
    }
  }
  return datum;
}

protected Object readWithoutConversion(Object old, Schema expected,
    ResolvingDecoder in) throws IOException {
  switch (expected.getType()) {
  case RECORD:  return readRecord(old, expected, in);
  case ENUM:    return readEnum(expected, in);
  case ARRAY:   return readArray(old, expected, in);
  case MAP:     return readMap(old, expected, in);
  case UNION:   return read(old, expected.getTypes().get(in.readIndex()), in);
  case FIXED:   return readFixed(old, expected, in);
  case STRING:  return readString(old, expected, in);
  case BYTES:   return readBytes(old, expected, in);
  case INT:     return readInt(old, expected, in);
  case LONG:    return in.readLong();
  case FLOAT:   return in.readFloat();
  case DOUBLE:  return in.readDouble();
  case BOOLEAN: return in.readBoolean();
  case NULL:    in.readNull(); return null;
  default: throw new AvroRuntimeException("Unknown type: " + expected);
  }
}

针对不同type的schema,read方法实现也不一样。具体我们来看readRecord的实现:

/** Called to read a record instance. May be overridden for alternate record
 * representations.*/
protected Object readRecord(Object old, Schema expected, 
    ResolvingDecoder in) throws IOException {
  Object r = data.newRecord(old, expected);
  Object state = data.getRecordState(r, expected);

  for (Field f : in.readFieldOrder()) {
    int pos = f.pos();
    String name = f.name();
    Object oldDatum = null;
    if (old!=null) {
      oldDatum = data.getField(r, name, pos, state);
    }
    readField(r, f, oldDatum, in, state);
  }

  return r;
}

你可能感兴趣的:(hadoop)