flink table api/sql消费kafka的json数据保存到mysql

flink消费kafka数据的版本问题,可以去https://mvnrepository.com/,查看对应版本。
环境:
mysql
zookeeper:3.4.13
kafka:0.8_2.11
flink:1.7.2(pom.xml中)

完整代码:
pom.xml:
flink table api/sql消费kafka的json数据保存到mysql_第1张图片
flink table api/sql消费kafka的json数据保存到mysql_第2张图片
flink table api/sql消费kafka的json数据保存到mysql_第3张图片

代码FlinkKafkajson:

import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.TableEnvironment;
import org.apache.flink.table.api.java.StreamTableEnvironment;
import org.apache.flink.table.descriptors.Json;
import org.apache.flink.table.descriptors.*;
import org.apache.flink.table.descriptors.Schema;
import org.apache.flink.types.Row;

/**
 * Created by luhaiqing on 2019/6/11.
 */
public  class FlinkKafkajson {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        StreamTableEnvironment tableEnvironment = TableEnvironment.getTableEnvironment(env);
        tableEnvironment.connect(new Kafka().version("0.8").topic("lhqtest").startFromLatest()
                .property("bootstrap.servers","192.168.190.133:9092")
                .property("zookeeper.connect","192.168.190.133:2181")
                .property("group.id", "lhqtest"))
                .withFormat(new Json().failOnMissingField(true).deriveSchema())
                .withSchema(new Schema()
                        .field("id", Types.INT)
                        .field("name", Types.STRING)
                        .field("sex", Types.STRING)

                )
                .inAppendMode()
                .registerTableSource("lhq_user");
        Table table = tableEnvironment.scan("lhq_user").select("id,name,sex");
        DataStream personDataStream = tableEnvironment.toAppendStream(table,Row.class);
        personDataStream.addSink(new MysqlSink());
        env.execute("userPv from Kafka");

    }
}

写入mysql代码:

import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.functions.sink.RichSinkFunction;
import org.apache.flink.types.Row;

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;

/**
 * Created by luhaiqing on 2019/6/5.
 */

    public class MysqlSink extends RichSinkFunction
    {

        private Connection connection;
        private PreparedStatement preparedStatement;

        @Override
        public void open(Configuration parameters) throws Exception {
            super.open(parameters);
            String className = "com.mysql.jdbc.Driver";
            Class.forName(className);
            String url = "jdbc:mysql://localhost:3306/test";
            String user = "root";
            String password = "123456";
            connection = DriverManager.getConnection(url, user, password);
            String sql = "replace into flinkjsontest(id,name,sex) values(?,?,?)";
            preparedStatement = connection.prepareStatement(sql);
            super.open(parameters);
        }

        @Override
        public void close() throws Exception {
            super.close();
            if (preparedStatement != null) {
                preparedStatement.close();
            }
            if (connection != null) {
                connection.close();
            }
            super.close();
        }

        public void invoke(Row value, Context context) throws Exception {

            int   id = (int)value.getField(0);
            String   name = (String)value.getField(1);
            String   sex = (String)value.getField(2);

            System.out.print(id+":"+name+":"+sex);
            preparedStatement.setInt(1, id);
            preparedStatement.setString(2, name);
            preparedStatement.setString(3,sex);
            int i = preparedStatement.executeUpdate();
            if (i > 0) {
                System.out.println("value=" + value);
            }
        }

    }

你可能感兴趣的:(大数据,flink)