(通俗易懂小白入门)字符串Hash+map判重——暴力且优雅

字符串Hash

今天我们要讲解的是用于处理字符串匹配查重的一个算法,当我们处理一些问题如给出10000个字符串输出其中不同的个数,或者给一个长度100000的字符串,找出其中相同的字符串有多少个(这样描述有点不清楚但是大致的意思就是当字符串长度很长,而且涉及到多个字符串之间反复比较时,由于比较的次数多,字符串长,很容易就超时了,而字符串Hash则是一种将字符串转换成整数,再借助一些STL工具如map可以很快完成查重工作)

这里给出两个例题辅助讲解

例题一

比如有t组输入,每次输入n个字符串(1<=n<=10000),且字符串只有小写字母,每个字符串长度1~10000(当然这只是个例子,也可能更长,题目也会更多变),对于这n个字符串,输出不同的字符串的数量,(如aaa, bbb, aaa则输出2)

例题分析

这是字符串Hash的模板题,我们要做的就是将一个个字符串转换成整数,然后扔到map中判断一下重复即可,而转换的方法则是重点,在此就不得不提一下,我们所知晓的二进制(base-2),一个二进制数1010可以转换成十进制2^3 + 2^1 == 10,而我们对于一个字符串“abab”,也可以把它当做是一个更大进制的数,如31,37,41...(因为我们通常将字符‘a’~‘z’以:单个字符 - ‘a’ 转换成整数,而进制的选择最好比单个整数大,且为质数更好),并且如果我们单单用:单个字符 - ‘a’ 转换成整数则还会遇到一个问题,就是当两个字符串“aab”和“ab”前缀相同时,由于a转换成0,则两个字符串转换成的整数(以base-31为例)0*31^2 + 0*31^1 + 1*31^0 == 0*31^1 + 1*31^0将无法从数值上进行区分,就没有达到我们需要的效果,所以我们采用:单个字符 - ‘a’ + 1的形式进行字符的转换,这样‘a’~‘z’则代表1~26,有效对其进行了区分

对于例题一,我们要做的就是输入的同时,将每一个字符串转换成一个大整数,而此时又要注意一个问题,就是当我们的字符串过长,以31进制为例,我们所塑造出的大整数很容易就超过int,long long,乃至unsigned long long的范围,此时我们很容易想到hash的方法,就是对这个很大的整数进行MOD操作,给定一个MOD数值,这样一个很大的数就可以被限制在一个固定区间内,但是还是会出现问题,MOD如果不够大则很容易出现两个大整数MOD后的值相同的情况,这里我们希望MOD的值是一个很大数如2^64,这样重复的进率就会很小,在这里我们需要提及一个巧妙的技巧,对于数据类型为unsigned long long的整数,它会自动进行取模,所以不用担心它会溢出(也省略了mod操作),所以我们用unsigned long long存放每一个字符串对于转换成base-31后的整数,然后将这些数放入一个map映射中就可以得到不同的字符串的个数

代码:

 1 #include
 2 #include
 3 #include<string.h>
 4 #include<string>
 5 #include
 6 using namespace std;
 7 
 8 typedef unsigned long long ull;
 9 const int N = 10005;
10 const int base = 31;
11 
12 ull operate(string s){
13     int len = s.size();
14     ull ans = 1;
15     for(int i = 0; i < len ; i++){
16         ans = ans * base + s[i] - 'a' + 1;
17     }
18     return ans;
19 }
20 
21 int main(){
22     int t;
23     scanf("%d", &t);
24     mapint> mp;
25     while(t--){
26         int n;
27         scanf("%d", &n);
28         mp.clear();
29         for(int i = 1; i <= n; i++){
30             string s;
31             cin>>s;
32             ull sum = operate(s);
33             mp[sum]++;
34         }
35         printf("%d\n", mp.size());
36     }
37     return 0;
38 }

 

例题二 HDU4821 String

本题只为了借助题干中的问题辅助讲解字符串Hash,并不要求完全搞清楚题目该怎么解,理解题意和题解核心即可,同样是有t组输入,每组输入一个字符串(长度1~100000),同时输入两个整数m和l,求在这个字符串中,长度为m*l的子串(子串由m个长度为l的小子串拼接而成)且满足这个子串的小子串两两互不完全相同(如:aab和aaa不同)

题目核心分析

对于一个字符串如abcabcbcaabc,l==3,m==3,则需要找到这个长串中长度为3*3==9的子串,且组成它的3个长度为3的小子串两两不完全相同,同样的我们需要将这个长串转换成一个进制为base的大整数同时执行MOD操作,同样用unsigned long long作为数据存储的类型,我们在输入这个字符串后从下标0开始不断求出长度为i的子串的对应的base进制的值(自动取模)存放在Hash[i]中,有点类似前缀和

1 Hash[0] = 1;
2 for(int i = 1; i < len; i++){
3     Hash[i] = Hash[i-1] * seed + s[i] - 'a' + 1;
4 }

 

这里需要注意的点是,对于一个字符串abcabc中的,前一个abc和第二个abc我们如何操作才能使得它们所代表的值是一样的,因为字符串相同,但是出现的位置不同,如果用前缀和的形式相减得到ans = Hash[l + i - 1] - Hash[i - 1],则由于随着字符串的增长,越靠后的子串中字符×base的次方就越高,则ans = Hash[l + i - 1] - Hash[i - 1]当l==0和l==3时尽管它们都是对abcabc中的abc子串执行计算差的操作,后面的那个得到的ans一定会更大,所以我们需要一种方法取平衡这种由于base^n次方造成的影响,我们需要引入一个辅助数组base[],base[i]存放base进制时base^i的值,而对于字符串abcabc,我们已经求出了下标为i时的前缀和(base进制且自动取模),ans = Hash[i + l - 1] - Hash[i - 1] * base[l]则无论子串的位置如何都能通过成base[l]将多的次方平衡掉,使得只要小子串是相同的,则差ans就是相同的,这样我们又可以通过map进行去重操作了

由于是初步讲解字符串hash操作,针对例题二的具体思路中还有一个(去头添尾)的操作没有讲解,具体可以看代码,也有一些注释,而普通的做法会超时,但是出于对字符串的Hash的介绍到此已经够了

这里需要注意的是,在解题时你的字符串输入后是从下标0开始还是从下标1开始的,会对ans = Hash[i + l - 1] - Hash[i - 1] * base[l]这个部分有着轻微的数值上的+1-1影响,请不要盲目照搬

代码:

(我的这个字符串从0开始处理,会有一些边界问题多加处理,如果从1开始则更为方便)

 1 #include<set>
 2 #include
 3 #include
 4 #include<string>
 5 #include<string.h>
 6 #include
 7 using namespace std;
 8 
 9 typedef long long ll;
10 typedef unsigned long long ull;    //自动取模?! 
11 const int N = 100005;
12 const int seed = 31;
13 ull base[N];
14 ull Hash[N];            //类似于前缀和 hash[i]存放长度为i时整个字符串代表的整数值 
15 
16 int main(){
17     int m, l;
18     while(scanf("%d%d", &m, &l) != EOF){
19         string s;
20         cin>>s;
21         int len = s.size();
22         int ans = 0;
23         mapint> mp;
24         base[0] = 1;
25         for(int i = 1; i <= l; i++)            //存放seed^i的权重 
26             base[i] = base[i-1] * seed;
27         Hash[0] = s[0] - 'a' + 1;
28         for(int i = 1; i < len; i++){
29             Hash[i] = Hash[i-1] * seed + s[i] - 'a' + 1;
30         } 
31         for(int i = 0; i < l && i + m*l <= len; i++){            //采用一种去头添尾的神仙方法 
32 //            cout<<"LLLL"<
33             mp.clear();
34             for(int j = i; j <= i + (m-1)*l; j += l){
35                 //每次将一个小子串代表的大数放入map中
36                 if(j != 0){
37                     ull sum = Hash[j+l-1] - Hash[j-1] * base[l];
38 //                    cout<
39                     mp[sum]++;
40                 }else{
41                     ull sum = Hash[j+l-1];        //如果是下标0开始则不需要减 
42 //                    cout<
43                     mp[sum]++;
44                 }
45             }
46             //            cout<
47             if(mp.size() == m) ans++;
48 //            cout<<"size"<49 //            cout<<"mp[1]"<50 //            else ans--;
51             //去头添尾开始 
52             for(int j = i + l; j + m*l <= len; j+=l){
53                 //添尾 
54                 ull sum = Hash[j + m*l -1] - Hash[j + (m-1)*l - 1] * base[l];
55 //                cout<<"添尾"<56 //                cout<
57                 mp[sum]++;
58 //                cout<<"size"<59 //                cout<<"mp[1]"<60                 //去头
61                 if(j-l == 0){
62                     sum = Hash[j-1];
63                     mp[sum]--;
64                     if(mp[sum] == 0) mp.erase(sum);
65 //                    cout<<"去头"<66 //                    cout<67 //                    cout<<"size"<
68                 }else{
69                     sum = Hash[j-1] - Hash[j-l-1] * base[l];
70                     mp[sum]--;
71                     if(mp[sum] == 0) mp.erase(sum);
72 //                    cout<<"去头"<73 //                    cout<74 //                    cout<<"size"<
75                 }
76                 
77                 if(mp.size() == m) ans++;
78             }
79         }
80         if(s.size() == 1) ans=0;
81         printf("%d\n", ans);
82     }
83     return 0;
84 } 

 

转载于:https://www.cnblogs.com/findview/p/11393691.html

你可能感兴趣的:(数据结构与算法)