查看 CUDA 版本:
cat /usr/local/cuda/version.txt
或者:
nvcc -V
查看 CUDNN 版本:
cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2
查看能否使用gpu:
jupyter输入:
import tensorflow as tf
print("Num GPUs Available: ", len(tf.config.experimental.list_physical_devices('GPU')))
如果版本不对:
Num GPUs Available: 0
https://tensorflow.google.cn/install/source
经查阅:
tensorflow2.0.0需要安装cuda10.0和cudnn7.6:
下载对应的cuda10.0:
下载地址:https://developer.nvidia.com/cuda-toolkit-archive
首先查看Linux系统版本:
cat /etc/redhat-release
显示为 CentOS Linux release 7.7
再看架构:
uname -a
显示为: x86_64
下载对应版本:
拷贝到服务器上,进行安装:
sudo chmod +x cuda_10.1.105_418.39_linux.run
sudo sh cuda_10.1.105_418.39_linux.run
选项参考:
https://www.freesion.com/article/6641492348/
报错:
2. An NVIDIA kernel module ‘nvidia-drm’ appears to already be loaded in your kernel…
安装驱动时报的错误。
解决方案:
sudo service lightdm stop
禁用图形目标
sudo systemctl isolate multi-user.target
卸载Nvidia驱动程序
modprobe -r nvidia-drm
安装完毕查看:
cat /usr/local/cuda/version.txt
显示:CUDA Version 10.0.130
安装CUDA完毕。
官网下载:https://developer.nvidia.com/rdp/cudnn-archive
选择对应版本
我选择的是: cudnn-10.0-linux-x64-v7.6.5.32.tgz
拷贝到服务器:
tar -xvf cudnn-10.0-linux-x64-v7.6.5.32.tgz
sudo cp cuda/include/cudnn.h /usr/local/cuda-10.0/include # 填写对应的版本的cuda路径
sudo cp cuda/lib64/libcudnn* /usr/local/cuda-10.0/lib64 # 填写对应的版本的cuda路径
sudo chmod a+r /usr/local/cuda-10.0/include/cudnn.h /usr/local/cuda-10.0/lib64/libcudnn*
查看:cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2
vi ~/.bashrc
export CUDA_HOME=/usr/local/cuda-10.0
export LD_LIBRARY_PATH=/usr/local/cuda-10.0/lib64:"$LD_LIBRARY_PATH:/usr/local/cuda-10.0/lib64:/usr/local/cuda-10.0/extras/CUPTI/lib64"
export PATH=/usr/local/cuda-10.0/bin:$PATH
source ~/.bashrc
import tensorflow as tf
sess = tf.compat.v1.Session(config=tf.compat.v1.ConfigProto(log_device_placement=True))
如果打印出现GPU和CPU 则使用了GPU
只出现CPU 则未启动GPU
对应关系查询网址:点击这里
tensorflow2.0对应keras版本为2.3.1
import keras
print(keras.__version__)
显示版本为:2.2.5
重新安装:
cd xxx/xxx/anaconda3/bin
./pip install keras==2.3.1
安装完毕!
参考:
https://www.freesion.com/article/9245510937/
https://blog.csdn.net/sinat_23619409/article/details/84202651
https://blog.csdn.net/kingfoulin/article/details/98872965