matlab的mandist函数

mandist(A,B)函数是用来求A中的每个行向量与B中的每个列向量的绝对距离

EG 1 :

a = [1,2,3] b = [-1,5,6] c = [1,0,1]
mandist(a,b’) = 8

解释:
(1)b’ 表示 b矩阵的转置
(2)要求:mandist两个参数表示两个矩阵,第一个矩阵的列数 = 第二个矩阵的行数
(3)计算:|1-(-1)| + |2-5| + |3-6| = 8
(4)维数:行数 = 第一个矩阵的行数,列数 = 第二个矩阵的列数

练习 :
mandist(a,c’) = |1-1| + |2-0| + |3-1| = 4
mandist(c,b’) = |1-(-1)| + |0-5| + |1-6| = 12

EG 2 :

A = [1,2,3
—— 4,5,6]
mandist(A,A’) = [0,9
——————— 9,0]

解释:
(1)维数:A(2,3) , A’(3,2)

A’ = [1,4
——2,5
——3,6]

(2)令x = mandist(A,A’)
(3)计算:
x(1,1) = |1-1| + |2-2| +|3-3| = 0
x(1,2) = |1-4| + |2-5| +|3-6| = 9
x(2,1) = |4-1| + |5-2| +|6-3| = 9
x(2,2) = |4-4| + |5-5| +|6-6| = 0

练习:
y = mandist(A’,A) = [0,2,4
—————————2,0,2
—————————4,2,0]
计算:
y(1,1) = |1-1| + |4-4| = 0
y(1,2) = |1-2| + |4-5| = 2
y(1,3) = |1-3| + |4-6| = 4
y(2,1) = …

补充
mandist(A) = mandist(A’,A)
mandist(A’) = mandist(A,A’)

你可能感兴趣的:(matlab的mandist函数)