C++ 求最长递增子序列(动态规划)

 

i 0 1 2 3 4 5 6 7 8
a[i] 1 4 7 2 5 8 3 6 9
lis[i] 1 2 3 2 3 4 3 4 5

 

时间复杂度为n^2的算法:

//求最长递增子序列
//2019/2/28
#include
using namespace std;
int LIS(int a[],int N)
{
    
    int lis[100] = {};
    for(int i =0;i//给每一个数的lis赋初值为1
    {
        lis[i]=1;    
    }
    for(int i = 1;i)
    {
        for(int j =0;j)
        {
            if(a[j]1)  //找出当前元素前面比它小的元素,比较其lis值
                lis[i] = lis[j] + 1;
        }
    }
    int max = lis[0];
    for(int i =1;i)
    {
        if(lis[i]>max)
            max = lis[i];         //找出lis数组中最大值,即最长有序子序列的长度
    }
    return max;
}
int main()
{
    int N;
    int a[100];
    while(cin>>N)
    {
        for(int i = 0;i)
            cin>>a[i];
        cout<endl;

    }
    return 0;
}

 

转载于:https://www.cnblogs.com/ttzz/p/10452893.html

你可能感兴趣的:(数据结构与算法,c/c++)