关于在驱动程序中编写poll函数的理解
poll函数的实质,是把一个队列加入到poll_table这个大的轮循中,开始轮循,不断的循环检查是否有可以执行的队列,如果有
在file_operations这个结构体中的poll函数 指针是这样定义的:
static unsigned int s3c64xx_buttons_poll( struct file *file, struct poll_table_struct *wait)
其中参数 file是文件名,这个每个函数都有的,第二个参数是: struct poll_table_struct 结构体的指针,作用是利用poll_wait函数把某个DECLARE_WAIT_QUEUE_HEAD定义
的队列变量加入到队列中。然后设置一下这个设备的访问权限。
一般的模板是:
static unsigned int XXX_poll(struct file *filp, poll_table *wait)
{
unsigned int mask = 0;
struct XXX_dev *dev = filp->private_data; //获得设备结构指针
...
poll_wait(filp, &dev->r_wait, wait); //加读等待对列头
poll_wait(filp ,&dev->w_wait, wait); //加写等待队列头
if(...)//可读 这里可以加判断语句,也可以不加
{
mask |= POLLIN | POLLRDNORM; //标识数据可获得
}
if(...)//可写
{
mask |= POLLOUT | POLLRDNORM; //标识数据可写入
}
..
return mask;
}
对模板中poll_wait函数的理解:
定义:
void poll_wait(struct file *filp, wait_queue_head_t *queue, poll_table *wait);
参数解释: wait_queue_head_t类型的指针,就是你定义的队列,poll_table 是要加入的轮循,是有函数的形参,直接写上就可以了。
函数目的: 把定义的wait_queue_head_t类型的变量加入到 轮循中,开始轮循。注意,千万不要被"poll_wait"这个“wait”字眼迷惑了,这里不是等待。
一般返回的mask有:
mask |= POLLIN | POLLRDNORM; //说明当前的设备可以进行非阻塞读,即应用层调用read函数后立即返回,不在这里阻塞。
mask |= POLLOUT | POLLRDNORM; //说明当前的设备可以进行非阻塞写,即应用层调用write函数后可被写入而不阻塞.
返回的其他参数有:
POLLIN 普通或优先级带数据可读
POLLRDNORM 普通数据可读
POLLRDBAND 优先级带数据可读
POLLPRI 高优先级数据可读
POLLOUT 普通数据可写
POLLWRNORM 普通数据可写
POLLWRBAND 优先级带数据可写
POLLERR 发生错误
POLLHUP 发生挂起
POLLNVAL 描述字不是一个打开的文件
驱动的编写可以采用这样的形式 主要是实现:
static const struct file_operations mem_fops =
{
.owner = THIS_MODULE,
.llseek = mem_llseek,
.read = mem_read,
.write = mem_write,
.open = mem_open,
.release = mem_release,
.poll = mem_poll,
};
其中 .poll是用让应用层使用select或poll设备用的。 至于这个file_operations是用misc设备或者cdev设备,就是把这个mem_fops套进相关函数即可。
下面是先写出cdev设备的,相关程序/
/*//memdev.h 自定义头文件
******************************************************************************/
#ifndef _MEMDEV_H_
#define _MEMDEV_H_
#ifndef MEMDEV_MAJOR
#define MEMDEV_MAJOR 201 /*预设的mem的主设备号 if run insmod terminal print Device or resource busy change here*/
#endif
#ifndef MEMDEV_NR_DEVS
#define MEMDEV_NR_DEVS 2 /*设备数*/
#endif
#ifndef MEMDEV_SIZE
#define MEMDEV_SIZE 4096//分配内存的大小
#endif
/*mem设备描述结构体*/
struct mem_dev
{
char *data; //分配到的内存的起始地址
unsigned long size; //内存的大小
wait_queue_head_t inq;
};
#endif /* _MEMDEV_H_ */
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "memdev.h"
static mem_major = MEMDEV_MAJOR;
bool have_data = false; /*表明设备有足够数据可供读*/
module_param(mem_major, int, S_IRUGO);
struct mem_dev *mem_devp; /*设备结构体指针*/
struct cdev cdev;
/*文件打开函数*/
int mem_open(struct inode *inode, struct file *filp)
{
struct mem_dev *dev;
/*获取次设备号*/
int num = MINOR(inode->i_rdev);
if (num >= MEMDEV_NR_DEVS)
return -ENODEV;
dev = &mem_devp[num];
/*将设备描述结构指针赋值给文件私有数据指针*/
filp->private_data = dev;
return 0;
}
int mem_release(struct inode *inode, struct file *filp)/*文件释放函数*/
{
return 0;
}
static ssize_t mem_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)/*读函数*/
{
unsigned long p = *ppos;
unsigned int count = size;
int ret = 0;
struct mem_dev *dev = filp->private_data; /*获得设备结构体指针*/
/*判断读位置是否有效*/
if (p >= MEMDEV_SIZE)
return 0;
if (count > MEMDEV_SIZE - p)
count = MEMDEV_SIZE - p;
while (!have_data) /* 没有数据可读,考虑为什么不用if,而用while */
{
if(filp->f_flags & O_NONBLOCK)
return -EAGAIN;
wait_event_interruptible(dev->inq,have_data);//waiting for have_datea ==ture
}
/*读数据到用户空间*/
if (copy_to_user(buf, (void*)(dev->data + p), count))
{
ret = - EFAULT;
}
else
{
*ppos += count;
ret = count;
printk(KERN_INFO "read %d bytes(s) from %d\n", count, p);
}
have_data = false; /* 表明不再有数据可读 */
return ret;
}
static ssize_t mem_write(struct file *filp, const char __user *buf, size_t size, loff_t *ppos)/*写函数*/
{
unsigned long p = *ppos;
unsigned int count = size;
int ret = 0;
struct mem_dev *dev = filp->private_data; /*获得设备结构体指针*/
/*分析和获取有效的写长度*/
if (p >= MEMDEV_SIZE)
return 0;
if (count > MEMDEV_SIZE - p)
count = MEMDEV_SIZE - p;
/*从用户空间写入数据*/
if (copy_from_user(dev->data + p, buf, count))
ret = - EFAULT;
else
{
*ppos += count;
ret = count;
printk(KERN_INFO "written %d bytes(s) from %d\n", count, p);
}
have_data = true; /* 有新的数据可读 */
/* 唤醒读进程 */
wake_up(&(dev->inq));
return ret;
}
static loff_t mem_llseek(struct file *filp, loff_t offset, int whence)/* seek文件定位函数 */
{
loff_t newpos;
switch(whence) {
case 0: /* SEEK_SET */
newpos = offset;
break;
case 1: /* SEEK_CUR */
newpos = filp->f_pos + offset;
break;
case 2: /* SEEK_END */
newpos = MEMDEV_SIZE -1 + offset;
break;
default: /* can't happen */
return -EINVAL;
}
if ((newpos<0) || (newpos>MEMDEV_SIZE))
return -EINVAL;
filp->f_pos = newpos;
return newpos;
}
unsigned int mem_poll(struct file *filp, poll_table *wait)
{
struct mem_dev *dev = filp->private_data;
unsigned int mask = 0;
poll_wait(filp, &dev->inq, wait);/*将等待队列添加到poll_table表中 */
if (have_data)
mask |= POLLIN | POLLRDNORM; /* readable */
return mask;
}
/*文件操作结构体*/
static const struct file_operations mem_fops =
{
.owner = THIS_MODULE,
.llseek = mem_llseek,
.read = mem_read,
.write = mem_write,
.open = mem_open,
.release = mem_release,
.poll = mem_poll,
};
/*设备驱动模块加载函数*/
static int memdev_init(void)
{
int result;
int i;
dev_t devno = MKDEV(mem_major, 0);
/* 静态申请设备号*/
if (mem_major)
result = register_chrdev_region(devno, 2, "memdev");
else /* 动态分配设备号 */
{
result = alloc_chrdev_region(&devno, 0, 2, "memdev");
mem_major = MAJOR(devno);
}
if (result < 0)
return result;
/*初始化cdev结构*/
cdev_init(&cdev, &mem_fops);
cdev.owner = THIS_MODULE;
cdev.ops = &mem_fops;
/* 注册字符设备 */
cdev_add(&cdev, MKDEV(mem_major, 0), MEMDEV_NR_DEVS);
/* 为设备描述结构分配内存*/
mem_devp = kmalloc(MEMDEV_NR_DEVS * sizeof(struct mem_dev), GFP_KERNEL);
if (!mem_devp) /*申请失败*/
{
result = - ENOMEM;
goto fail_malloc;
}
memset(mem_devp, 0, sizeof(struct mem_dev));
/*为设备分配内存*/
for (i=0; i < MEMDEV_NR_DEVS; i++)
{
mem_devp[i].size = MEMDEV_SIZE;
mem_devp[i].data = kmalloc(MEMDEV_SIZE, GFP_KERNEL);
memset(mem_devp[i].data, 0, MEMDEV_SIZE);
/*初始化等待队列*/
init_waitqueue_head(&(mem_devp[i].inq));
//init_waitqueue_head(&(mem_devp[i].outq));
}
return 0;
fail_malloc:
unregister_chrdev_region(devno, 1);
return result;
}
/*模块卸载函数*/
static void memdev_exit(void)
{
cdev_del(&cdev); /*注销设备*/
kfree(mem_devp); /*释放设备结构体内存*/
unregister_chrdev_region(MKDEV(mem_major, 0), 2); /*释放设备号*/
}
MODULE_AUTHOR("David Xie");
MODULE_LICENSE("GPL");
module_init(memdev_init);
module_exit(memdev_exit);
=============================================================
写文件 app_write
#include
int main()
{
FILE *fp = NULL;
char Buf[128];
/*打开设备文件*/
fp = fopen("/dev/memdev","r+");
if (fp == NULL)
{
printf("Open Dev memdev0 Error!\n");
return -1;
}
/*写入设备*/
strcpy(Buf,"memdev is char dev!");
printf("Write BUF: %s\n",Buf);
fwrite(Buf, sizeof(Buf), 1, fp);
// sleep(1);
fclose(fp);
return 0;
}
=================================
读文件 app_read
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
int main()
{
int fd;
fd_set rds; //声明描述符集合
int ret;
char Buf[128];
struct timeval timeout;
/*初始化Buf*/
strcpy(Buf,"memdev is char dev!");
printf("BUF: %s\n",Buf);
/*打开设备文件*/
fd = open("/dev/memdev",O_RDWR);
if(fd< 0) {
perror("open dev/memdev");
exit(1);
}
FD_ZERO(&rds); //清空描述符集合
FD_SET(fd, &rds); //设置描述符集合
/*清除Buf*/
strcpy(Buf,"Buf is NULL!");
printf("Read BUF1: %s\n",Buf);
timeout.tv_sec=10;
timeout.tv_usec=0;
ret = select(fd + 1, &rds, NULL, NULL, &timeout);//调用select()监控函数
if (ret < 0)
{
printf("select error!\n");
exit(1);
}
if (FD_ISSET(fd, &rds)) //测试fd1是否可读
read(fd, Buf, sizeof(Buf));
/*检测结果*/
printf("Read sssssBUF2: %s\n",Buf);
close(fd);
return 0;
}
====================================================
makefile 文件:
ARCH = arm
CROSS_COMPILE = arm-linux-
#target name #################
TARGET_NAME=test_mem_dev
# path define here
INSTALL_PATH := /home/sno/mini2440/rootfs_qtopia_qt4/home/drivers/
KERNEL_DIR := /opt/FriendlyARM/mini2440/linux-2.6.32.2/
PWD := $(shell pwd)
obj-m := $(TARGET_NAME).o
all:
make ARCH=$(ARCH) CROSS_COMPILE=$(CROSS_COMPILE) -C $(KERNEL_DIR) SUBDIRS=$(PWD) modules
clean:
rm *.o *.ko *.mod.c
install:
sudo install $(TARGET_NAME).ko $(INSTALL_PATH)
uninstall:
rm -f $(INSTALL_PATH)/$(TARGET_NAME).ko
.PHONY:clean
===============================================================================================
********************************************************************************************
******************************************************************************************
或者采用:
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define DEVICE_NAME "buttons"
struct button_irq_desc {
int irq;
int pin;
int pin_setting;
int number;
char *name;
};
static struct button_irq_desc button_irqs [] = {
/* {IRQ_EINT8 , S3C2410_GPG(0) , S3C2410_GPG0_EINT8 , 0, "KEY0"},
{IRQ_EINT11, S3C2410_GPG(3) , S3C2410_GPG3_EINT11 , 1, "KEY1"},
{IRQ_EINT13, S3C2410_GPG(5) , S3C2410_GPG5_EINT13 , 2, "KEY2"},
{IRQ_EINT14, S3C2410_GPG(6) , S3C2410_GPG6_EINT14 , 3, "KEY3"},
{IRQ_EINT15, S3C2410_GPG(7) , S3C2410_GPG7_EINT15 , 4, "KEY4"},
{IRQ_EINT19, S3C2410_GPG(11), S3C2410_GPG11_EINT19, 5, "KEY5"},*/
{IRQ_EINT19, S3C2410_GPG(11), S3C2410_GPG11_EINT19, 0, "KEY1"}, /* K1 */
{IRQ_EINT11, S3C2410_GPG(3), S3C2410_GPG3_EINT11, 1, "KEY2"}, /* K2 */
{IRQ_EINT2, S3C2410_GPF(2), S3C2410_GPF2_EINT2, 2, "KEY3"}, /* K3 */
{IRQ_EINT0, S3C2410_GPF(0), S3C2410_GPF0_EINT0, 3, "KEY4"}, /* K4 */
};
static volatile char key_values [] = {'0', '0', '0', '0'};
static DECLARE_WAIT_QUEUE_HEAD(button_waitq);
static volatile int ev_press = 0;
static irqreturn_t buttons_interrupt(int irq, void *dev_id)
{
struct button_irq_desc *button_irqs = (struct button_irq_desc *)dev_id;
int down;
// udelay(0);
down = !s3c2410_gpio_getpin(button_irqs->pin);
if (down != (key_values[button_irqs->number] & 1)) { // Changed
key_values[button_irqs->number] = '0' + down;
ev_press = 1;
wake_up_interruptible(&button_waitq);
}
return IRQ_RETVAL(IRQ_HANDLED);
}
static int s3c24xx_buttons_open(struct inode *inode, struct file *file)
{
int i;
int err = 0;
for (i = 0; i < sizeof(button_irqs)/sizeof(button_irqs[0]); i++) {
if (button_irqs[i].irq < 0) {
continue;
}
err = request_irq(button_irqs[i].irq, buttons_interrupt, IRQ_TYPE_EDGE_BOTH,
button_irqs[i].name, (void *)&button_irqs[i]);
if (err)
break;
}
if (err) {
i--;
for (; i >= 0; i--) {
if (button_irqs[i].irq < 0) {
continue;
}
disable_irq(button_irqs[i].irq);
free_irq(button_irqs[i].irq, (void *)&button_irqs[i]);
}
return -EBUSY;
}
ev_press = 1;
return 0;
}
static int s3c24xx_buttons_close(struct inode *inode, struct file *file)
{
int i;
for (i = 0; i < sizeof(button_irqs)/sizeof(button_irqs[0]); i++) {
if (button_irqs[i].irq < 0) {
continue;
}
free_irq(button_irqs[i].irq, (void *)&button_irqs[i]);
}
return 0;
}
static int s3c24xx_buttons_read(struct file *filp, char __user *buff, size_t count, loff_t *offp)
{
unsigned long err;
if (!ev_press) {
if (filp->f_flags & O_NONBLOCK)
return -EAGAIN;
else
wait_event_interruptible(button_waitq, ev_press);
}
ev_press = 0;
err = copy_to_user(buff, (const void *)key_values, min(sizeof(key_values), count));
return err ? -EFAULT : min(sizeof(key_values), count);
}
static unsigned int s3c24xx_buttons_poll( struct file *file, struct poll_table_struct *wait)
{
unsigned int mask = 0;
poll_wait(file, &button_waitq, wait);
if (ev_press)
mask |= POLLIN | POLLRDNORM;
return mask;
}
static struct file_operations dev_fops = {
.owner = THIS_MODULE,
.open = s3c24xx_buttons_open,
.release = s3c24xx_buttons_close,
.read = s3c24xx_buttons_read,
.poll = s3c24xx_buttons_poll,
};
static struct miscdevice misc = {
.minor = MISC_DYNAMIC_MINOR,
.name = DEVICE_NAME,
.fops = &dev_fops,
};
static int __init dev_init(void)
{
int ret;
ret = misc_register(&misc);
printk (DEVICE_NAME"\tinitialized\n");
return ret;
}
static void __exit dev_exit(void)
{
misc_deregister(&misc);
}
module_init(dev_init);
module_exit(dev_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("FriendlyARM Inc is gt2440 .");
/*实现原理 : 就是使用等待队列。。。。。。。
1、等待队列的实现:
在linux中,等待队列的结构如下:
struct __wait_queue_head {
spinlock_t lock; //自旋锁,用来对task_list链表起保护作用,实现了对等待队列的互斥访问
struct list_head task_list; //用来存放等待的进程
};
typedef struct __wait_queue_head wait_queue_head_t;
2、等待队列的使用
(1)定义和初始化等待队列:
wait_queue_head_t wait;//定义等待队列
init_waitqueue_head(&wait);//初始化等待队列
定义并初始化等待队列:
#define DECLARE_WAIT_QUEUE_HEAD(name) wait_queue_head_t name = __WAIT_QUEUE_HEAD_INITIALIZER(name)
(2)添加或移除等待队列:
void add_wait_queue(wait_queue_head_t *q, wait_queue_t *wait);//将等待队列元素wait添加到等待队列头q所指向的等待队列链表中。
void remove_wait_queue(wait_queue_head_t *q, wait_queue_t *wait);
(3)等待事件:
wait_event(wq, condition);//在等待队列中睡眠直到condition为真。
wait_event_timeout(wq, condition, timeout);
wait_event_interruptible(wq, condition) ; ///没有分析透他们的区别????????????????????!!!!!!!!!!!!!!!
wait_event_interruptible_timeout(wq, condition, timeout) ;
(4)睡眠:
sleep_on(wait_queue_head_t *q);
interruptible_sleep_on(wait_queue_head_t *q);
(5)唤醒等待队列:
//可唤醒处于TASK_INTERRUPTIBLE和TASK_UNINTERRUPTIBLE状态的进程;
#define wake_up(x) __wake_up(x, TASK_NORMAL, 1, NULL)
//只能唤醒处于TASK_INTERRUPTIBLE状态的进程
#define wake_up_interruptible(x) __wake_up(x, TASK_INTERRUPTIBLE, 1, NULL)
*/