FastICA独立成分 - python实现 - C++实现

FastICA 步骤

1.      对观测数据 X 进行中心化处理,使样本的每个属性均值为0

2.      求出样本矩阵的协方差矩阵 Cx

3.      用主成分分析得到白化矩阵 W0-1/2UT 对 其中Λ、U分别是Cx的特征值、特征向量

4.      计算正交阵Z=W0*X, Z维数可以根据主成分的占比,小于样本属性数

5.      初始化权重矩阵(随机的)W设迭代次数count、停机误差Critical

6.      令Wp=E{ Z*g(WTZ) } - E{ g'(WTZ) }*W     其中非线性函数g(x),可取g1(x)=tanh(x)或g2(y)=y*exp(-y2/2)或g3(y)=y3等非线性函数

7.       SZ=Wp*Z 为分离后的信号矩阵


import matplotlib.pyplot as plt  
import numpy as np
from numpy import linalg as LA

C=200 #样本数
x=np.arange(C)
s1=2*np.sin(0.02*np.pi *x)#正弦信号

a=np.linspace(-2,2,25)
s2= np.array([a,a,a,a,a,a,a,a]).reshape(200,)#锯齿信号
s3=np.array(20*(5*[2]+5*[-2]))  #方波信号 
s4 =4*(np.random.random([1,C])-0.5).reshape(200,) #随机信号

# drow origin signal 
ax1 = plt.subplot(411)
ax2 = plt.subplot(412)
ax3 = plt.subplot(413)
ax4 = plt.subplot(414)
ax1.plot(x,s1)
ax2.plot(x,s2)
ax3.plot(x,s3)
ax4.plot(x,s4)
plt.show()

s=np.array([s1,s2,s3,s4])  #合成信号
ran=2*np.random.random([4,4])  #随机矩阵
mix=ran.dot(s) #混合信号
# drow mix signal 
ax1 = plt.subplot(411)
ax2 = plt.subplot(412)
ax3 = plt.subplot(413)
ax4 = plt.subplot(414)
ax1.plot(x,mix.T[:,0])
ax2.plot(x,mix.T[:,1])
ax3.plot(x,mix.T[:,2])
ax4.plot(x,mix.T[:,3])
plt.show()

#mix=np.array([[1.1,2,3,4,1],
   # [5,6,2,8,7],
  #  [6,2,5,1,3],
   # [7,8,3,3,2]])

Maxcount=10000  #  %最大迭代次数  
Critical=0.00001  #  %判断是否收敛
R,C=mix.shape

average=np.mean(mix, axis=1) #计算行均值,axis=0,计算每一列的均值

for i in range(R):
    mix[i,:]=mix[i,:]- average[i] #数据标准化,均值为零
Cx=np.cov(mix)  
value,eigvector = np.linalg.eig(Cx)#计算协方差阵的特征值
val=value**(-1/2)*np.eye(R, dtype=float) 
White=np.dot(val ,eigvector.T)  #白化矩阵

Z=np.dot(White,mix) #混合矩阵的主成分Z,Z为正交阵


#W = np.random.random((R,R))# 4x4
W=0.5*np.ones([4,4])#初始化权重矩阵

for n in range(R):
    count=0    
    WP=W[:,n].reshape(R,1) #初始化
    LastWP=np.zeros(R).reshape(R,1) # 列向量;LastWP=zeros(m,1); 
    while LA.norm(WP-LastWP,1)>Critical:
        #print(count," loop :",LA.norm(WP-LastWP,1))
        count=count+1
        LastWP=np.copy(WP)    #  %上次迭代的值  
        gx=np.tanh(LastWP.T.dot(Z))  # 行向量

        for i in range(R):  
            tm1=np.mean( Z[i,:]*gx ) 
            tm2=np.mean(1-gx**2)*LastWP[i] #收敛快
            #tm2=np.mean(gx)*LastWP[i]     #收敛慢
            WP[i]=tm1 - tm2
        #print(" wp :", WP.T ) 
        WPP=np.zeros(R) #一维0向量
        for j in range(n):  
            WPP=WPP+  WP.T.dot(W[:,j])* W[:,j] 
        WP.shape=1,R
        WP=WP-WPP
        WP.shape=R,1
        WP=WP/(LA.norm(WP))
        if(count ==Maxcount):
            print("reach Maxcount,exit loop",LA.norm(WP-LastWP,1))
            break
    print("loop count:",count )
    W[:,n]=WP.reshape(R,)
SZ=W.T.dot(Z)

# plot extract signal
x=np.arange(0,C)
ax1 = plt.subplot(411)
ax2 = plt.subplot(412)
ax3 = plt.subplot(413)
ax4 = plt.subplot(414)
ax1.plot(x, SZ.T[:,0])
ax2.plot(x, SZ.T[:,1])
ax3.plot(x, SZ.T[:,2])
ax4.plot(x, SZ.T[:,3])
plt.show()


结果示意图:

FastICA独立成分 - python实现 - C++实现_第1张图片

下面为C++代码实现,和python有相同的结果。

#include "matrix.h"

/*
数据格式:行数是属性数,每一列是一个样本,一下为实例数据
1.1     2       3       4       1
5       6       2       8       7
6       2       5       1       3
7       8       3       3       2
*/

int main()
{
	int R = 4;
	int C = 5;
	int maxcnt= 200;
	Matrix src(R, C);  // 原始数据
	cin >> src;
	src.zeromean(false);

	Matrix Cov = src.T().cov(); //样本的协方差矩阵
	Matrix eigval = Cov.eig_val();
	cout << "eigval \n" << eigval << endl;
	Matrix eigvect = Cov.eig_vect();
	cout << "eigvect \n" << eigvect << endl;

	eigval = eigval.exponent(-0.5);//每个特征值的 -0.5 次方
	eigval.maxlimit(10000);  ///超过10000,设置为0
	cout << "eigval^-0.5 \n" << eigval;

	Matrix white = eigval* eigvect.T(); //由特征值、特征向量组成白化矩阵
	Matrix Z = white*src;    //正交阵
	cout << "Z:\n" << Z;

	Matrix W(R, R, 0.5);  //初始权值矩阵
	for (size_t i = 0; i < R; i++)
	{
		int cnt = 0;
		Matrix WP = W.getcol(i);  
		Matrix LastWP(R,1,0);
		while ((WP - LastWP).norm1()>0.01)
		{
			cnt++;
			LastWP = WP;  //上次迭代的值
			Matrix gx = (LastWP.T()*Z).mtanh();// 行向量
			for (size_t j = 0; j < R; j++) //更新 WP
			{ 
				double tm1 = (Z.getrow(j).multi(gx) ).mean();
				Matrix one(gx.Row(), gx.Col(), 1.0);
				double tm2 = (one - gx.exponent(2)).mean()*LastWP[j][0];
				WP[j][0] = tm1 - tm2;
			}
			Matrix WPP(R, 1, 0);
			for (size_t k = 0; k < i; k++)
			{
				double tem = (WP.T()*W.getcol(k))[0][0];
				WPP = WPP + tem * W.getcol(k);
			}	
			WP = WP - WPP;
			WP = WP / (WP.norm2());
			if (cnt == maxcnt)
			{
				cout << "reach Maxcount:"<< maxcnt<<",exit loop" << endl;
				break;
			}		
		}
		cout << "loop cnt:" << cnt << endl;
		for (size_t s = 0; s < R; s++)
		{
			W[s][i] = WP[s][0];  
		}
	}
	cout << "W:\n" << W << endl;
	Matrix SZ = W.T()*Z;
	cout << "SZ:\n" << SZ<

测试数据的结果为:

FastICA独立成分 - python实现 - C++实现_第2张图片

与python结果对比:

FastICA独立成分 - python实现 - C++实现_第3张图片


参考文献:

1,https://en.wikipedia.org/wiki/Independent_component_analysis

2,https://blog.csdn.net/zb1165048017/article/details/48464573


c++引用的矩阵类Matrix.h

#include   
#include       // std::ifstream
#include       
#include         
using namespace std;
class Matrix
{
private:
	unsigned  row, col, size;
	double *pmm;//数组指针    
public:
	Matrix(unsigned r, unsigned c) :row(r), col(c)//非方阵构造     
	{
		size = r*c;
		if (size>0)
		{
			pmm = new double[size];
			for (unsigned j = 0; j0)
		{
			pmm = new double[size];
			for (unsigned j = 0; j0)
		{
			pmm = new double[size];
			for (unsigned j = 0; j>(istream&, Matrix&);
	
	friend ofstream &operator<<(ofstream &out, Matrix &obj);  // 输出到文件
	friend ostream &operator<<(ostream&, Matrix&);          // 输出到屏幕
	friend Matrix  operator+(const Matrix&, const Matrix&);
	friend Matrix  operator-(const Matrix&, const Matrix&);
	friend Matrix  operator*(const Matrix&, const Matrix&);  //矩阵乘法
	friend Matrix  operator*(double, const Matrix&);  //矩阵乘法
	friend Matrix  operator*(const Matrix&, double);  //矩阵乘法

	friend Matrix  operator/(const Matrix&, double);  //矩阵 除以单数

	Matrix multi(const Matrix&); // 对应元素相乘
	Matrix mtanh(); // 对应元素相乘
	unsigned Row()const{ return row; }  
	unsigned Col()const{ return col; }
	Matrix getrow(size_t index); // 返回第index 行,索引从0 算起
	Matrix getcol(size_t index); // 返回第index 列

	Matrix cov(_In_opt_ bool flag = true);   //协方差阵 或者样本方差   
	double det();   //行列式    
	Matrix solveAb(Matrix &obj);  // b是行向量或者列向量
	Matrix diag();  //返回对角线元素    
	//Matrix asigndiag();  //对角线元素    
	Matrix T()const;   //转置    
	void sort(bool);//true为从小到大          
	Matrix adjoint();
	Matrix inverse();
	void QR(_Out_ Matrix&, _Out_ Matrix&)const;
	Matrix eig_val(_In_opt_ unsigned _iters = 1000);
	Matrix eig_vect(_In_opt_ unsigned _iters = 1000);

	double norm1();//1范数   
	double norm2();//2范数   
	double mean();// 矩阵均值  
	double*operator[](int i){ return pmm + i*col; }//注意this加括号, (*this)[i][j]   
	void zeromean(_In_opt_  bool flag = true);//默认参数为true计算列
	void normalize(_In_opt_  bool flag = true);//默认参数为true计算列
	Matrix exponent(double x);//每个元素x次幂
	Matrix  eye();//对角阵
	void  maxlimit(double max,double set=0);//对角阵
};
//友元仅仅是指定了访问权限,不是一般意义的函数声明,最好在类外再进行一次函数声明。      
//istream &operator>>(istream &is, Matrix &obj);      
//ostream &operator<<(ostream &is, Matrix &obj);      
//对称性运算符,如算术,相等,应该是普通非成员函数。      
//Matrix  operator*( const Matrix&,const Matrix& );      
//Matrix  operator+( const Matrix&,const Matrix& );     
//dets递归调用    


Matrix Matrix::mtanh() // 对应元素 tanh()
{
	Matrix ret(row, col);
	for (unsigned i = 0; i brow ? 0 : 1; //bb中小于arow的行,同行赋值,等于的错过,大于的加一      
			for (int j = 0; jmax ? 0 : pmm[i*col + j];
		}
	}
  
}
Matrix Matrix::eye()//对角阵
{
 
	for (unsigned i = 0; i< row; i++)
	{
		for (unsigned j = 0; j < col; j++)
		{
			if (i == j)
			{
				pmm[i*col + j] = 1.0;
			}
		}
	}
	return *this;
}
void Matrix::zeromean(_In_opt_  bool flag)
{
	if (flag == true) //计算列均值
	{
		double *mean = new double[col];
		for (unsigned j = 0; j < col; j++)
		{
			mean[j] = 0.0;
			for (unsigned i = 0; i < row; i++)
			{
				mean[j] += pmm[i*col + j];
			}
			mean[j] /= row;
		}
		for (unsigned j = 0; j < col; j++)
		{

			for (unsigned i = 0; i < row; i++)
			{
				pmm[i*col + j] -= mean[j];
			}
		}
		delete[]mean;
	}
	else //计算行均值
	{
		double *mean = new double[row];
		for (unsigned i = 0; i< row; i++)
		{
			mean[i] = 0.0;
			for (unsigned j = 0; j < col; j++)
			{
				mean[i] += pmm[i*col + j];
			}
			mean[i] /= col;
		}
		for (unsigned i = 0; i < row; i++)
		{
			for (unsigned j = 0; j < col; j++)
			{
				pmm[i*col + j] -= mean[i];
			}
		}
		delete[]mean;
	}
}

void Matrix::normalize(_In_opt_  bool flag)
{
	if (flag == true) //计算列均值
	{
		double *mean = new double[col];

		for (unsigned j = 0; j < col; j++)
		{
			mean[j] = 0.0;
			for (unsigned i = 0; i < row; i++)
			{
				mean[j] += pmm[i*col + j];
			}
			mean[j] /= row;
		}
		for (unsigned j = 0; j < col; j++)
		{

			for (unsigned i = 0; i < row; i++)
			{
				pmm[i*col + j] -= mean[j];
			}
		}
		///计算标准差
		for (unsigned j = 0; j < col; j++)
		{
			mean[j] = 0;
			for (unsigned i = 0; i < row; i++)
			{
				mean[j] += pow(pmm[i*col + j],2);//列平方和
			}
				mean[j] = sqrt(mean[j] / row); // 开方
		}
		for (unsigned j = 0; j < col; j++)
		{
			for (unsigned i = 0; i < row; i++)
			{
				pmm[i*col + j] /= mean[j];//列平方和
			}
		}
		delete[]mean;
	}
	else //计算行均值
	{
		double *mean = new double[row];
		for (unsigned i = 0; i< row; i++)
		{
			mean[i] = 0.0;
			for (unsigned j = 0; j < col; j++)
			{
				mean[i] += pmm[i*col + j];
			}
			mean[i] /= col;
		}
		for (unsigned i = 0; i < row; i++)
		{
			for (unsigned j = 0; j < col; j++)
			{
				pmm[i*col + j] -= mean[i];
			}
		}
		///计算标准差
		for (unsigned i = 0; i< row; i++)
		{
			mean[i] = 0.0;
			for (unsigned j = 0; j < col; j++)
			{
				mean[i] += pow(pmm[i*col + j], 2);//列平方和
			}
			mean[i] = sqrt(mean[i] / col); // 开方
		}
		for (unsigned i = 0; i < row; i++)
		{
			for (unsigned j = 0; j < col; j++)
			{
				pmm[i*col + j] /= mean[i];
			}
		}
		delete[]mean;
	}
}

double Matrix::det()
{
	if (col == row)
		return dets(row, pmm);
	else
	{
		cout << ("行列不相等无法计算") << endl;
		return 0;
	}
}
/      
istream &operator>>(istream &is, Matrix &obj)
{
	for (unsigned i = 0; i> obj.pmm[i];
	}
	return is;
}

ostream &operator<<(ostream &out, Matrix &obj)
{
	for (unsigned i = 0; i < obj.row; i++) //打印逆矩阵        
	{
		for (unsigned j = 0; j < obj.col; j++)
		{
			out << (obj[i][j]) << "\t";
		}
		out << endl;
	}
	return out;
}
ofstream &operator<<(ofstream &out, Matrix &obj)//打印逆矩阵到文件  
{
	for (unsigned i = 0; i < obj.row; i++)      
	{
		for (unsigned j = 0; j < obj.col; j++)
		{
			out << (obj[i][j]) << "\t";
		}
		out << endl;
	}
	return out;
}
Matrix operator+(const Matrix& lm, const Matrix& rm)
{
	if (lm.col != rm.col || lm.row != rm.row)
	{
		Matrix temp(0, 0);
		temp.pmm = NULL;
		cout << "operator+(): 矩阵shape 不合适,col:"
			<< lm.col << "," << rm.col << ".  row:" << lm.row << ", " << rm.row << endl;
		return temp; //数据不合法时候,返回空矩阵      
	}
	Matrix ret(lm.row, lm.col);
	for (unsigned i = 0; ipmm[j])
				{
					tem = pmm[i];
					pmm[i] = pmm[j];
					pmm[j] = tem;
				}
			}
			else
			{
				if (pmm[i]= 0; --m)
		{
			sum = 0;
			for (unsigned j = m + 1; j < col; ++j)
			{
				sum += pmm[m *  col + j] * ret.pmm[j * ret.col + count];
			}
			sum = -sum / pmm[m *  col + m];
			midSum += sum * sum;
			ret.pmm[m * ret.col + count] = sum;
		}
		midSum = sqrt(midSum);
		for (unsigned i = 0; i < ret.row; ++i)
		{
			ret.pmm[i * ret.col + count] /= midSum; //每次求出一个列向量      
		}
	}
	*this = matcopy;//恢复原始矩阵;    
	return ret;
}
Matrix Matrix::cov(bool flag)
{
	//row 样本数,column 变量数    
	if (col == 0)
	{
		Matrix m(0);
		return m;
	}
	double *mean = new double[col]; //均值向量    

	for (unsigned j = 0; jbi)    //ai行的代数余子式是:小于ai的行,aa与bb阵,同行赋值    
						pi = 0;
					else
						pi = 1;     //大于等于ai的行,取aa阵的ai+1行赋值给阵bb的bi行    
					if (aj>bj)    //ai行的代数余子式是:小于ai的行,aa与bb阵,同行赋值    
						pj = 0;
					else
						pj = 1;     //大于等于ai的行,取aa阵的ai+1行赋值给阵bb的bi行    
					bb[bi*(n - 1) + bj] = pmm[(bi + pi)*n + bj + pj];
				}
			}
			if ((ai + aj) % 2 == 0)  q = 1;//因为列数为0,所以行数是偶数时候,代数余子式为-1.    
			else  q = (-1);
			ret.pmm[ai*n + aj] = q*dets(n - 1, bb);  //加符号变为代数余子式    
		}
	}
	delete[]bb;
	return ret;
}
Matrix Matrix::inverse()
{
	double det_aa = det();
	if (det_aa == 0)
	{
		cout << "行列式为0 ,不能计算逆矩阵。" << endl;
		Matrix rets(0);
		return rets;
	}
	Matrix adj = adjoint();
	Matrix ret(row);

	for (unsigned i = 0; i


你可能感兴趣的:(机器学习,Python)