1091 N-自守数 (15分)

1091 N-自守数 (15分)

如果某个数 K 的平方乘以 N 以后,结果的末尾几位数等于 K,那么就称这个数为“N-自守数”。例如 3×92​2​​=25392,而 25392 的末尾两位正好是 92,所以 92 是一个 3-自守数。

本题就请你编写程序判断一个给定的数字是否关于某个 N 是 N-自守数。

输入格式:

输入在第一行中给出正整数 M(≤20),随后一行给出 M 个待检测的、不超过 1000 的正整数。

输出格式:

对每个需要检测的数字,如果它是 N-自守数就在一行中输出最小的 N 和 NK​2​​ 的值,以一个空格隔开;否则输出 No。注意题目保证 N<10。

输入样例:

3
92 5 233

输出样例:

3 25392
1 25
No

 

/*
直接枚举,没有坑点 
*/
#include
int main(){
//	freopen("input.txt","r",stdin);
	int num,i,j,n,k;
	scanf("%d",&n);
	for(i = 0;i < n;i++){
		scanf("%d",&num);
		int flag = 0;
		for(j = 1;j < 10;j++){
			int a = j*num*num;
			int b = num;
			int c = 1;
			while(b){
				c *= 10;
				b /= 10;
			}
			a %= c;
			if(a == num){
				printf("%d %d\n",j,j*num*num);
				flag = 1;
				break;
			}
		}
		if(flag == 0){
			printf("No\n");
		}
	}
	return 0;
} 

 

你可能感兴趣的:(PAT乙级)