hadoop 用MR实现join操作

在MR中,类似于join类的操作非常常见。在关系型数据库中,join就是最强大的功能之一。在hive中,jion操作也十分常见。现在,本博主就手把手教会大家怎么在MR中实现join操作。为了方便起见,本文就以left join为视角来实现。

1.数据准备

关于什么是join,什么是left join,本文就先不讨论了。先准备如下数据:

cat employee.txt
jd,david
jd,mike
tb,mike
tb,lucifer
elong,xiaoming
elong,ali
tengxun,xiaoming
tengxun,lilei
xxx,aaa
cat salary.txt
jd,1600
tb,1800
elong,2000
tengxun,2200

然后将两个文件分别put到hdfs上面

hadoop fs -put employee.txt /tmp/wanglei/employee/employee.txt
hadoop fs -put salary.txt /tmp/wanglei/salary/salary.txt

我们想用employee左关联salary。至此,数据准备已经完毕。

2.新建一个maven项目

新建一个maven项目,pom文件如下:

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0modelVersion>

    <groupId>leilei.bit.edugroupId>
    <artifactId>testjoinartifactId>
    <version>1.0version>
    <packaging>jarpackaging>

    <name>testjoinname>
    <url>http://maven.apache.orgurl>

    <properties>
        <project.build.sourceEncoding>UTF-8project.build.sourceEncoding>
        <jarfile.name>testjoinjarfile.name>
        <jar.out.dir>jarjar.out.dir>
    properties>

    <dependencies>
        <dependency>
            <groupId>junitgroupId>
            <artifactId>junitartifactId>
            <version>4.11version>
            <scope>testscope>
        dependency>
        <dependency>
            <groupId>org.apache.hadoopgroupId>
            <artifactId>hadoop-commonartifactId>
            <version>2.5.0version>
        dependency>
        <dependency>
            <groupId>org.apache.hadoopgroupId>
            <artifactId>hadoop-mapreduce-client-coreartifactId>
            <version>2.5.0version>
        dependency>
        <dependency>
            <groupId>org.apache.mrunitgroupId>
            <artifactId>mrunitartifactId>
            <version>1.0.0version>
            <classifier>hadoop2classifier>
        dependency>
        <dependency>
            <groupId>org.anarres.lzogroupId>
            <artifactId>lzo-hadoopartifactId>
            <version>1.0.2version>
        dependency>
    dependencies>

    <build>
        <plugins>
            <plugin>
                <groupId>org.apache.maven.pluginsgroupId>
                <artifactId>maven-jar-pluginartifactId>
                <version>2.4version>
                <configuration>
                    <finalName>${jarfile.name}finalName>
                    <outputDirectory>${jar.out.dir}outputDirectory>
                configuration>
            plugin>

            <plugin>

                <groupId>org.apache.maven.pluginsgroupId>
                <artifactId>maven-compiler-pluginartifactId>
                <version>3.1version>
                <configuration>
                    <source>1.6source>
                    <target>1.6target>
                    <encoding>UTF-8encoding>
                    <descriptorRefs>
                        <descriptorRef>jar-with-dependenciesdescriptorRef>
                    descriptorRefs>
                configuration>
            plugin>
        plugins>
    build>

project>

然后开始实现left join的逻辑:

package leilei.bit.edu.testjoin;

import java.io.IOException;
import java.util.Vector;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

public class LeftJoin extends Configured implements Tool{

    public static final String DELIMITER = ",";

    public static class LeftJoinMapper extends
        Mapper {

        protected void map(LongWritable key, Text value, Context context)
            throws IOException,InterruptedException {
            /*
             * 拿到两个不同文件,区分出到底是哪个文件,然后分别输出
             */
            String filepath = ((FileSplit)context.getInputSplit()).getPath().toString();
            String line = value.toString();
            if (line == null || line.equals("")) return; 

            if (filepath.indexOf("employee") != -1) {
                String[] lines = line.split(DELIMITER);
                if(lines.length < 2) return;

                String company_id = lines[0];
                String employee = lines[1];
                context.write(new Text(company_id),new Text("a:"+employee));
            }

            else if(filepath.indexOf("salary") != -1) {
                String[] lines = line.split(DELIMITER);
                if(lines.length < 2) return;

                String company_id = lines[0];
                String salary = lines[1];
                context.write(new Text(company_id), new Text("b:" + salary));
            }
        }
    }

    public static class LeftJoinReduce extends 
            Reducer {
        protected void reduce(Text key, Iterable values,
                Context context) throws IOException, InterruptedException{
            Vector vecA = new Vector();
            Vector vecB = new Vector();

            for(Text each_val:values) {
                String each = each_val.toString();
                if(each.startsWith("a:")) {
                    vecA.add(each.substring(2));
                } else if(each.startsWith("b:")) {
                    vecB.add(each.substring(2));
                }
            }

            for (int i = 0; i < vecA.size(); i++) {
                /*
                 * 如果vecB为空的话,将A里的输出,B的位置补null。
                 */
                if (vecB.size() == 0) {
                    context.write(key, new Text(vecA.get(i) + DELIMITER + "null"));
                } else {
                    for (int j = 0; j < vecB.size(); j++) {
                        context.write(key, new Text(vecA.get(i) + DELIMITER + vecB.get(j)));
                    }
                }
            }
        }
    }

    public int run(String[] args) throws Exception {
        Configuration conf = getConf();
        GenericOptionsParser optionparser = new GenericOptionsParser(conf, args);
        conf = optionparser.getConfiguration();

        Job job = new Job(conf,"leftjoin");
        job.setJarByClass(LeftJoin.class);
        FileInputFormat.addInputPaths(job, conf.get("input_dir"));
        Path out = new Path(conf.get("output_dir"));
        FileOutputFormat.setOutputPath(job, out);
        job.setNumReduceTasks(conf.getInt("reduce_num",2));

        job.setMapperClass(LeftJoinMapper.class);
        job.setReducerClass(LeftJoinReduce.class);
        job.setInputFormatClass(TextInputFormat.class);
        job.setOutputFormatClass(TextOutputFormat.class);

        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(Text.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(Text.class);
        conf.set("mapred.textoutputformat.separator", ",");

        return (job.waitForCompletion(true) ? 0 : 1);
    }

    public static void main(String[] args) throws Exception{
        int res = ToolRunner.run(new Configuration(),new LeftJoin(),args);
        System.exit(res);
    }

}

稍微说一下处理逻辑:
1.map阶段,把所有输入拆分为k,v形式。其中k是company_id,即我们要关联的字段。如果输入是employee相关的文件,那么map阶段的value加上标识符”a”,表示是employee的输出。对于salary文件,加上标识符”b”。
2.reduce阶段,将每个k下的value列表拆分为分别来自employee和salary的两部分,然后双层循环做笛卡尔积即可。
3.注意的是,因为是left join,所以在reduce阶段,如果employee对应的company_id有,而salary没有,注意要输出此部分数据。

3.打包

将上面的项目用maven打包,并上传到服务器上。

4.使用shell脚本run起来

在服务器上写一个最简单的shell脚本,将代码run起来:

vim run_join.sh

#!/bin/bash

output=/tmp/wanglei/leftjoin

if hadoop fs -test -d $output
then
    hadoop fs -rm -r $output
fi

hadoop jar testjoin.jar leilei.bit.edu.testjoin.LeftJoin \
    -Dinput_dir=/tmp/wanglei/employee,/tmp/wanglei/salary \
    -Doutput_dir=$output \
    -Dmapred.textoutputformat.separator=","

执行此shell脚本:

./run_join.sh

5.最终输出

等job跑完以后,查看最终的输出结果:

hadoop fs -cat /tmp/wanglei/leftjoin/*
elong,ali,2000
elong,xiaoming,2000
tengxun,lilei,2200
tengxun,xiaoming,2200
jd,mike,1600
jd,david,1600
tb,lucifer,1800
tb,mike,1800
xxx,aaa,null

最终的输出结果,准确无误!至此,我们用mr完美实现了left join的功能!

你可能感兴趣的:(hadoop)