在MR中,类似于join类的操作非常常见。在关系型数据库中,join就是最强大的功能之一。在hive中,jion操作也十分常见。现在,本博主就手把手教会大家怎么在MR中实现join操作。为了方便起见,本文就以left join为视角来实现。
关于什么是join,什么是left join,本文就先不讨论了。先准备如下数据:
cat employee.txt
jd,david
jd,mike
tb,mike
tb,lucifer
elong,xiaoming
elong,ali
tengxun,xiaoming
tengxun,lilei
xxx,aaa
cat salary.txt
jd,1600
tb,1800
elong,2000
tengxun,2200
然后将两个文件分别put到hdfs上面
hadoop fs -put employee.txt /tmp/wanglei/employee/employee.txt
hadoop fs -put salary.txt /tmp/wanglei/salary/salary.txt
我们想用employee左关联salary。至此,数据准备已经完毕。
新建一个maven项目,pom文件如下:
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0modelVersion>
<groupId>leilei.bit.edugroupId>
<artifactId>testjoinartifactId>
<version>1.0version>
<packaging>jarpackaging>
<name>testjoinname>
<url>http://maven.apache.orgurl>
<properties>
<project.build.sourceEncoding>UTF-8project.build.sourceEncoding>
<jarfile.name>testjoinjarfile.name>
<jar.out.dir>jarjar.out.dir>
properties>
<dependencies>
<dependency>
<groupId>junitgroupId>
<artifactId>junitartifactId>
<version>4.11version>
<scope>testscope>
dependency>
<dependency>
<groupId>org.apache.hadoopgroupId>
<artifactId>hadoop-commonartifactId>
<version>2.5.0version>
dependency>
<dependency>
<groupId>org.apache.hadoopgroupId>
<artifactId>hadoop-mapreduce-client-coreartifactId>
<version>2.5.0version>
dependency>
<dependency>
<groupId>org.apache.mrunitgroupId>
<artifactId>mrunitartifactId>
<version>1.0.0version>
<classifier>hadoop2classifier>
dependency>
<dependency>
<groupId>org.anarres.lzogroupId>
<artifactId>lzo-hadoopartifactId>
<version>1.0.2version>
dependency>
dependencies>
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.pluginsgroupId>
<artifactId>maven-jar-pluginartifactId>
<version>2.4version>
<configuration>
<finalName>${jarfile.name}finalName>
<outputDirectory>${jar.out.dir}outputDirectory>
configuration>
plugin>
<plugin>
<groupId>org.apache.maven.pluginsgroupId>
<artifactId>maven-compiler-pluginartifactId>
<version>3.1version>
<configuration>
<source>1.6source>
<target>1.6target>
<encoding>UTF-8encoding>
<descriptorRefs>
<descriptorRef>jar-with-dependenciesdescriptorRef>
descriptorRefs>
configuration>
plugin>
plugins>
build>
project>
然后开始实现left join的逻辑:
package leilei.bit.edu.testjoin;
import java.io.IOException;
import java.util.Vector;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
public class LeftJoin extends Configured implements Tool{
public static final String DELIMITER = ",";
public static class LeftJoinMapper extends
Mapper {
protected void map(LongWritable key, Text value, Context context)
throws IOException,InterruptedException {
/*
* 拿到两个不同文件,区分出到底是哪个文件,然后分别输出
*/
String filepath = ((FileSplit)context.getInputSplit()).getPath().toString();
String line = value.toString();
if (line == null || line.equals("")) return;
if (filepath.indexOf("employee") != -1) {
String[] lines = line.split(DELIMITER);
if(lines.length < 2) return;
String company_id = lines[0];
String employee = lines[1];
context.write(new Text(company_id),new Text("a:"+employee));
}
else if(filepath.indexOf("salary") != -1) {
String[] lines = line.split(DELIMITER);
if(lines.length < 2) return;
String company_id = lines[0];
String salary = lines[1];
context.write(new Text(company_id), new Text("b:" + salary));
}
}
}
public static class LeftJoinReduce extends
Reducer {
protected void reduce(Text key, Iterable values,
Context context) throws IOException, InterruptedException{
Vector vecA = new Vector();
Vector vecB = new Vector();
for(Text each_val:values) {
String each = each_val.toString();
if(each.startsWith("a:")) {
vecA.add(each.substring(2));
} else if(each.startsWith("b:")) {
vecB.add(each.substring(2));
}
}
for (int i = 0; i < vecA.size(); i++) {
/*
* 如果vecB为空的话,将A里的输出,B的位置补null。
*/
if (vecB.size() == 0) {
context.write(key, new Text(vecA.get(i) + DELIMITER + "null"));
} else {
for (int j = 0; j < vecB.size(); j++) {
context.write(key, new Text(vecA.get(i) + DELIMITER + vecB.get(j)));
}
}
}
}
}
public int run(String[] args) throws Exception {
Configuration conf = getConf();
GenericOptionsParser optionparser = new GenericOptionsParser(conf, args);
conf = optionparser.getConfiguration();
Job job = new Job(conf,"leftjoin");
job.setJarByClass(LeftJoin.class);
FileInputFormat.addInputPaths(job, conf.get("input_dir"));
Path out = new Path(conf.get("output_dir"));
FileOutputFormat.setOutputPath(job, out);
job.setNumReduceTasks(conf.getInt("reduce_num",2));
job.setMapperClass(LeftJoinMapper.class);
job.setReducerClass(LeftJoinReduce.class);
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
conf.set("mapred.textoutputformat.separator", ",");
return (job.waitForCompletion(true) ? 0 : 1);
}
public static void main(String[] args) throws Exception{
int res = ToolRunner.run(new Configuration(),new LeftJoin(),args);
System.exit(res);
}
}
稍微说一下处理逻辑:
1.map阶段,把所有输入拆分为k,v形式。其中k是company_id,即我们要关联的字段。如果输入是employee相关的文件,那么map阶段的value加上标识符”a”,表示是employee的输出。对于salary文件,加上标识符”b”。
2.reduce阶段,将每个k下的value列表拆分为分别来自employee和salary的两部分,然后双层循环做笛卡尔积即可。
3.注意的是,因为是left join,所以在reduce阶段,如果employee对应的company_id有,而salary没有,注意要输出此部分数据。
将上面的项目用maven打包,并上传到服务器上。
在服务器上写一个最简单的shell脚本,将代码run起来:
vim run_join.sh
#!/bin/bash
output=/tmp/wanglei/leftjoin
if hadoop fs -test -d $output
then
hadoop fs -rm -r $output
fi
hadoop jar testjoin.jar leilei.bit.edu.testjoin.LeftJoin \
-Dinput_dir=/tmp/wanglei/employee,/tmp/wanglei/salary \
-Doutput_dir=$output \
-Dmapred.textoutputformat.separator=","
执行此shell脚本:
./run_join.sh
等job跑完以后,查看最终的输出结果:
hadoop fs -cat /tmp/wanglei/leftjoin/*
elong,ali,2000
elong,xiaoming,2000
tengxun,lilei,2200
tengxun,xiaoming,2200
jd,mike,1600
jd,david,1600
tb,lucifer,1800
tb,mike,1800
xxx,aaa,null
最终的输出结果,准确无误!至此,我们用mr完美实现了left join的功能!