- Scala高阶函数之reduce,reduceleft,fold
lqlj2233
scala开发语言后端
在Scala中,reduce、reduceLeft和fold是处理集合的高阶函数,它们通常用于将集合中的元素聚合为一个单一的结果。这些函数都基于某种形式的累积操作,但它们之间存在细微差别。reducereduce函数通过二元操作符(接受两个参数)来减少集合中元素的数量,直到得到一个单独的结果。它要求集合非空,因为没有初始值可以用来开始累积过程。如果尝试在一个空集合上调用reduce,将会抛出异常。
- Scala中的迭代器
麻芝汤圆
Scalascalajvm开发语言
在Scala中,迭代器(Iterator)是一种用于遍历集合元素的抽象概念,它允许开发者逐个访问集合中的元素而不必一次性将整个集合加载到内存中。以下是对Scala迭代器的详细解释:1.迭代器的特点:延迟计算(LazyEvaluation):迭代器在访问元素时才计算它们,这意味着只有当你请求下一个元素时,迭代器才会计算它。这种延迟计算的特性使得迭代器非常适合处理大规模数据集。单次使用(SingleU
- Scala的属性访问权限
麻芝汤圆
Scala前端javascriptscalajvm
Scala是一种多范式编程语言,它集成了面向对象编程的特性。在Scala中,属性(字段)的访问权限可以通过使用访问控制符来控制,这些控制符包括private、protected和public1.Public(public)定义:公共属性可以在任何地方被访问,无论是在同一个包内,还是不同的包,或者是不同的类中。示例:classPerson{publicvarname:String="JohnDoe"
- 通往 AI 之路:Python 机器学习入门-线性代数
一小路一
从0开始学习机器学习机器学习人工智能python后端开发语言线性代数
2.1线性代数(机器学习的核心)线性代数是机器学习的基础之一,许多核心算法都依赖矩阵运算。本章将介绍线性代数中的基本概念,包括标量、向量、矩阵、矩阵运算、特征值与特征向量,以及奇异值分解(SVD)。2.1.1标量、向量、矩阵1.标量(Scalar)标量是一个单独的数,例如:a=5在Python中:a=5#标量2.向量(Vector)向量是由多个数值组成的一维数组,例如:v=[2,3,5]Pytho
- golang实践-目录结构与工具
alex_023
golanggolang
这个话题确实是老调重弹,但确异常重要。老实说,用go做正式项目之前,写过scala,但那个SBT太折磨人,偶然就上了go。两者语法的差别就不说了,但入坑之后才发现水深:没有模块部署及官方的版本管理工具,会带来很多麻烦。反复折腾了近一年,基本上形成了一点固有的模式,做一般项目还算能够简单支持。没什么特别的技术点,更多只是一点心得。一、目录结构我们的代码以rpc为主,http为辅(调用rpc,也辅助测
- 基于 Flink CDC YAML 的 MySQL 到 Kafka 流式数据集成
flink大数据实时计算
这篇教程将展示如何基于FlinkCDCYAML快速构建MySQL到Kafka的流式数据集成作业,包含整库同步、表结构变更同步的演示和特色功能的介绍。本教程的演示都将在FlinkCDCCLI中进行,无需一行Java/Scala代码,也无需安装IDE。准备阶段准备FlinkStandalone集群下载Flink1.19.2,解压后得到flink-1.19.2目录。使用下面的命令跳转至Flink目录下,
- (一)spark是什么?
一智哇
大数据框架学习sparkbigdata大数据
1.spark是什么?spark是一个用来实现快速,通用的集群计算平台spark适用于各种各样原先需要多种不同的分布式平台的场景,包括批处理,迭代算法,交互式查询,流处理。通过在一个统一的框架下支持这些不同的计算,spark使我们可以简单而低耗地把各种处理流程整合在一起。2.spark的用途(1):数据科学任务具备SQL、统计、预测建模(机器学习)等方面的经验,以及一定的python,matlab
- spark hdfs 常用命令
毛球饲养员
sparksparkhdfs
目录lsrmgettext以下按照使用频率和使用先后顺序排序(纯个人习惯)ls列出hdfs文件系统路径下的目录和文件hdfsdfs-ls列出hdfs文件系统路径下所有的目录和文件hdfsdfs-ls-Rrmhadoopfs-rm...hadoopfs-rm-r...每次可以删除多个文件或目录getlocalfile不能和hdfsfile名字不能相同,否则会提示文件已存在,没有重名的文件会复制到本地
- 常用spark命令
会拉小提琴的左脚
大数据sparkhadoophdfs
--spark启动localhost$spark-sql--masteryarn启动主节点yarn模式--查看hdfs文件hdfsdfs-ls/spark/myDatabase.db查看我们建的表其实是是建立在hdfs里面hdfsdfs-du-h/spark/myDatabase.db查看我们的文件大小也就是我们的表的大小要接近最小的block大小如64M或者128M-h是以我们合适的单位去展示大
- Spark详解二
卢子墨
Spark原理实战总结spark
八、Spark部署模式1、Local本地模式:运行于本地spark-shell--masterlocal[2](local[2]是说,执行Application需要用到CPU的2个核)2、Standalone独立模式:Spark自带的一种集群模式Spark自己管理集群资源,此时只需要将Hadoop的HDFS启动Master节点有master,Slave节点上有worker启动./bin/spark
- Spark基本命令
chenworeng5605
大数据scalashell
一、spark所在目录cdusr/local/spark二、启动spark/usr/local/spark/sbin/start-all.sh启动Hadoop以及Spark:bash./starths.sh浏览器查看:172.16.31.17:8080停止Hadoop以及Sparkbash./stophs.sh三、基础使用参考链接:https://www.cnblogs.com/dasn/arti
- scala
小冻梨!!!
scala
正则表达式\n\n\\\\:表示正则表达式\nW:表示一个非字(不是一个字,例如:空格,逗号,句号)\nW+:多个非字\n\n基本组成部分\n1.字符字面量:\n普通字符:在正则表达式中,大多数普通字符(如字母、数字等)匹配它们自身。\n元字符(Metacharacters):有些字符具有特殊含义,这些被称为元字符。\n2.字符类:\n字符类。包括单个字符和字符范围。eg:‘a’匹配字符‘a’,‘
- scala图书管理系统 【dao】软件包
忧伤火锅麻辣烫
scala笔记
BookDAOpackageorg.apppackagedaoimportorg.app.modeis.UserModeimportscala.collection.mutable.ListBuffeclassUserDAO{//加载所有的用户defloadUsers():ListBuffer[UserModel]={valusers=newListBuffer[UserModel]()valso
- spark vi基本使用
忧伤火锅麻辣烫
笔记
打开文件与创建文件是Linux的内置命令,以命令的方式来运行。命令格式:vi/路径/文件名注意以下两种情况:1.如果这个文件不存在,此时就是新建文件,编辑器的左下角会提示:newfile2.如果文件已存在,此时就打开这个文件,进入命令模式。把文本内容添加到一个全新的文件的快捷方式:echo1>>1.txt三种模式vi编辑器有三种工作模式,分别为:命令模式,输入模式,底线模式。命令模式:所敲按键编辑
- Spark是什么?可以用来做什么?
Bugkillers
大数据spark大数据分布式
ApacheSpark是一个开源的分布式计算框架,专为处理大规模数据而设计。它最初由加州大学伯克利分校开发,现已成为大数据处理领域的核心工具之一。相比传统的HadoopMapReduce,Spark在速度、易用性和功能多样性上具有显著优势。一、Spark的核心特点速度快:基于内存计算(In-MemoryProcessing),比基于磁盘的MapReduce快10~100倍。支持高效的DAG(有向无
- spark 常见操作命令
小冻梨!!!
spark
配置虚拟机配置即让自己的虚拟机可以联网,和别的虚拟机通讯一、配置vm虚拟机网段。具体设置为:虚拟机左上角点击编辑→虚拟网络编辑器选择VMnet8,要改动两个地方(注意:它会需要管理员权限):1.子网IP改成192.168.10.02.NAT设置→192.168.10.2让所有的VM配置的虚拟机使用NAT时,它们的网段都是一致的。注意:这里的第三个部分的10并不是固定的,我们自己可以约定,但是
- PySpark实现获取S3上Parquet文件的数据结构,并自动在Snowflake里建表和生成对应的建表和导入数据的SQL
weixin_30777913
pythonawssqlspark
PySpark实现S3上解析存储Parquet文件的多个路径,获取其中的数据Schema,再根据这些Schema,参考以下文本,得到创建S3路径Stage的SQL语句和上传数据到Snowflake数据库的SQL语句,同样的Stage路径只需创建一个Stage对象即可,并在S3上保存为SQL,并在Snowflake里创建对应的表,并在S3上存储创建表的SQL语句。要将存储在S3上的Parquet文件
- 37.索引生命周期管理—kibana 索引配置
大勇任卷舒
ELKelasticsearch大数据bigdata
37.1背景引入索引生命周期管理的一个最重要的目的就是对大量时序数据在es读写操作的性能优化如通过sparkstreaming读取Kafka中的日志实时写入es,这些日志高峰期每天10亿+,每分钟接近100w,希望es能够对单分片超过50g或者30天前的索引进行归档,并能够自动删除90天前的索引这个场景可以通过ILM进行策略配置来实现37.2介绍ES索引生命周期管理分为4个阶段:hot、warm、
- 通过spark-redshift工具包读取redshift上的表
stark_summer
sparksparkredshiftparquetapi数据
spark数据源API在spark1.2以后,开始提供插件诗的机制,并与各种结构化数据源整合。spark用户可以读取各种各样数据源的数据,比如Hive表、JSON文件、列式的Parquet表、以及其他表。通过spark包可以获取第三方数据源。而这篇文章主要讨论spark新的数据源,通过spark-redshift包,去访问AmazonRedshift服务。spark-redshift包主要由Dat
- 大数据面试临阵磨枪不知看什么?看这份心理就有底了-大数据常用技术栈常见面试100道题
大模型大数据攻城狮
大数据面试职场和发展面试题数据仓库算法
目录1描述Hadoop的架构和它的主要组件。2MapReduce的工作原理是什么?3什么是YARN,它在Hadoop中扮演什么角色?4Spark和HadoopMapReduce的区别是什么?5如何在Spark中实现数据的持久化?6SparkStreaming的工作原理是什么?7如何优化Spark作业的性能?8描述HBase的架构和它的主要组件。9HBase的读写流程是怎样的?10HBase如何处理
- Spark复习八:简述Spark运行流程以及Spark分区以及简述SparkContext
IT change the world
sparkspark大数据面试hadoopzookeeper
1.简述Spark运行流程:1.构建SparkApplication的运行环境,启动SparkContext2.SparkContext向资源管理器(可以是Standalone,Mesos,Yarm)申请运行Executor资源,并启动StandaloneExecutorbackend3.Executor向SparkContext申请Task4.SparkContext将应用程序分发给Execut
- Spark使用Parqute存储方式有什么好处
冰火同学
Sparkspark
列式存储:压缩效率和查询效率谓词下推存储层:查询数据块生态兼容性高:Spark,hadoop等都兼容
- 初学者如何用 Python 写第一个爬虫?
ADFVBM
面试学习路线阿里巴巴python爬虫开发语言
??欢迎来到我的博客!非常高兴能在这里与您相遇。在这里,您不仅能获得有趣的技术分享,还能感受到轻松愉快的氛围。无论您是编程新手,还是资深开发者,都能在这里找到属于您的知识宝藏,学习和成长。??博客内容包括:Java核心技术与微服务:涵盖Java基础、JVM、并发编程、Redis、Kafka、Spring等,帮助您全面掌握企业级开发技术。大数据技术:涵盖Hadoop(HDFS)、Hive、Spark
- H5 ios软键盘弹起遮挡输入框
陈陈小白
ios前端html5
在使用Vue3和TypeScript开发H5页面时,输入框固定在底部,遇到iOS软键盘弹起遮挡输入框的问题。以下为几种解决方案:1.使用viewport元素调整页面视图iOS在弹出软键盘时,可能会导致页面内容被遮挡。通过调整meta标签中的viewport来确保页面可以适应不同的屏幕尺寸和键盘显示。maximum-scale=1.0可以防止页面缩放。user-scalable=no禁用缩放功能。结
- Spark架构都有那些组件
冰火同学
Sparkspark架构大数据
Spark组件架构主要采用主从结构,分别是driver驱动器,Excutor执行器,和clusterManager集群管理器这个三个架构组件其中driver驱动器主要负责spark执行Excutor的任务分配。Excutor执行器猪獒就是负责将被分配到的task任务进行处理clastermanager管理有多钟:第一种的spark自带的的集群管理,叫做standalone。第二种是sparkony
- Redis的Lettuce客户端SCAN异常
怎么才能努力学习啊
redisjava数据库
使用Redis的Lettuce客户端在集群模式下的SCAN用游标查询遇到的问题Lettuce客户端在使用集群模式时候使用SCAN进行游标查询,发现自定义传参不起作用。下面代码例子importio.lettuce.core.ScanCursorimportio.lettuce.core.cluster.api.StatefulRedisClusterConnectionimportscala.jdk
- hive-staging文件问题——DataX同步数据重复
Aldebaran α
Hivesqlhive大数据hdfsspark
1.产生原因1.使用Hue的界面工具执行Hive-sql。Hue会自动保存sql执行结果方便用户能够查看历史执行记录,所以会在相应目录下生成hive-staging文件;2.Hive-sql任务执行过程中出现异常,导致hive-staging文件未删除,未出现异常时,hive会自行删除hive-staging文件;3.使用spark-sqlonyarn跑sql程序生成的hive-staging文件
- 避免Hive和Spark生成HDFS小文件
穷目楼
数据库大数据大数据sparkhivehadoop
HDFS是为大数据设计的分布式文件系统,对大数据做了存储做了针对性的优化,但却不适合存储海量小文件。Hive和spark-sql是两个在常用的大数据计算分析引擎,用户直接以SQL进行大数据操作,底层的数据存储则多由HDFS提供。对小数据表的操作如果没做合适的处理则很容易导致大量的小文件在HDFS上生成,常见的一个情景是数据处理流程只有map过程,而流入map的原始数据数量较多,导致整个数据处理结束
- 机器学习_PySpark-3.0.3随机森林回归(RandomForestRegressor)实例
Mostcow
数据分析Python机器学习随机森林回归大数据
机器学习_PySpark-3.0.3随机森林回归(RandomForestRegressor)实例随机森林回归(RandomForestRegression):任务类型:随机森林回归主要用于回归任务。在回归任务中,算法试图预测一个连续的数值输出,而不是一个离散的类别。输出:随机森林回归的输出是一个连续的数值,表示输入数据的预测结果。算法原理:随机森林回归同样基于决策树,但在回归任务中,每个决策树的
- 强者联盟——Python语言结合Spark框架
博文视点
全栈工程师全栈全栈数据SparkPythonPySpark
引言:Spark由AMPLab实验室开发,其本质是基于内存的快速迭代框架,“迭代”是机器学习最大的特点,因此非常适合做机器学习。得益于在数据科学中强大的表现,Python语言的粉丝遍布天下,如今又遇上强大的分布式内存计算框架Spark,两个领域的强者走到一起,自然能碰出更加强大的火花(Spark可以翻译为火花),因此本文主要讲述了PySpark。本文选自《全栈数据之门》。全栈框架Spark由AMP
- jquery实现的jsonp掉java后台
知了ing
javajsonpjquery
什么是JSONP?
先说说JSONP是怎么产生的:
其实网上关于JSONP的讲解有很多,但却千篇一律,而且云里雾里,对于很多刚接触的人来讲理解起来有些困难,小可不才,试着用自己的方式来阐释一下这个问题,看看是否有帮助。
1、一个众所周知的问题,Ajax直接请求普通文件存在跨域无权限访问的问题,甭管你是静态页面、动态网页、web服务、WCF,只要是跨域请求,一律不准;
2、
- Struts2学习笔记
caoyong
struts2
SSH : Spring + Struts2 + Hibernate
三层架构(表示层,业务逻辑层,数据访问层) MVC模式 (Model View Controller)
分层原则:单向依赖,接口耦合
1、Struts2 = Struts + Webwork
2、搭建struts2开发环境
a>、到www.apac
- SpringMVC学习之后台往前台传值方法
满城风雨近重阳
springMVC
springMVC控制器往前台传值的方法有以下几种:
1.ModelAndView
通过往ModelAndView中存放viewName:目标地址和attribute参数来实现传参:
ModelAndView mv=new ModelAndView();
mv.setViewName="success
- WebService存在的必要性?
一炮送你回车库
webservice
做Java的经常在选择Webservice框架上徘徊很久,Axis Xfire Axis2 CXF ,他们只有一个功能,发布HTTP服务然后用XML做数据传输。
是的,他们就做了两个功能,发布一个http服务让客户端或者浏览器连接,接收xml参数并发送xml结果。
当在不同的平台间传输数据时,就需要一个都能解析的数据格式。
但是为什么要使用xml呢?不能使json或者其他通用数据
- js年份下拉框
3213213333332132
java web ee
<div id="divValue">test...</div>测试
//年份
<select id="year"></select>
<script type="text/javascript">
window.onload =
- 简单链式调用的实现技术
归来朝歌
方法调用链式反应编程思想
在编程中,我们可以经常遇到这样一种场景:一个实例不断调用它自身的方法,像一条链条一样进行调用
这样的调用你可能在Ajax中,在页面中添加标签:
$("<p>").append($("<span>").text(list[i].name)).appendTo("#result");
也可能在HQ
- JAVA调用.net 发布的webservice 接口
darkranger
webservice
/**
* @Title: callInvoke
* @Description: TODO(调用接口公共方法)
* @param @param url 地址
* @param @param method 方法
* @param @param pama 参数
* @param @return
* @param @throws BusinessException
- Javascript模糊查找 | 第一章 循环不能不重视。
aijuans
Way
最近受我的朋友委托用js+HTML做一个像手册一样的程序,里面要有可展开的大纲,模糊查找等功能。我这个人说实在的懒,本来是不愿意的,但想起了父亲以前教我要给朋友搞好关系,再加上这也可以巩固自己的js技术,于是就开始开发这个程序,没想到却出了点小问题,我做的查找只能绝对查找。具体的js代码如下:
function search(){
var arr=new Array("my
- 狼和羊,该怎么抉择
atongyeye
工作
狼和羊,该怎么抉择
在做一个链家的小项目,只有我和另外一个同事两个人负责,各负责一部分接口,我的接口写完,并全部测联调试通过。所以工作就剩下一下细枝末节的,工作就轻松很多。每天会帮另一个同事测试一些功能点,协助他完成一些业务型不强的工作。
今天早上到公司没多久,领导就在QQ上给我发信息,让我多协助同事测试,让我积极主动些,有点责任心等等,我听了这话,心里面立马凉半截,首先一个领导轻易说
- 读取android系统的联系人拨号
百合不是茶
androidsqlite数据库内容提供者系统服务的使用
联系人的姓名和号码是保存在不同的表中,不要一下子把号码查询来,我开始就是把姓名和电话同时查询出来的,导致系统非常的慢
关键代码:
1, 使用javabean操作存储读取到的数据
package com.example.bean;
/**
*
* @author Admini
- ORACLE自定义异常
bijian1013
数据库自定义异常
实例:
CREATE OR REPLACE PROCEDURE test_Exception
(
ParameterA IN varchar2,
ParameterB IN varchar2,
ErrorCode OUT varchar2 --返回值,错误编码
)
AS
/*以下是一些变量的定义*/
V1 NUMBER;
V2 nvarc
- 查看端号使用情况
征客丶
windows
一、查看端口
在windows命令行窗口下执行:
>netstat -aon|findstr "8080"
显示结果:
TCP 127.0.0.1:80 0.0.0.0:0 &
- 【Spark二十】运行Spark Streaming的NetworkWordCount实例
bit1129
wordcount
Spark Streaming简介
NetworkWordCount代码
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
- Struts2 与 SpringMVC的比较
BlueSkator
struts2spring mvc
1. 机制:spring mvc的入口是servlet,而struts2是filter,这样就导致了二者的机制不同。 2. 性能:spring会稍微比struts快。spring mvc是基于方法的设计,而sturts是基于类,每次发一次请求都会实例一个action,每个action都会被注入属性,而spring基于方法,粒度更细,但要小心把握像在servlet控制数据一样。spring
- Hibernate在更新时,是可以不用session的update方法的(转帖)
BreakingBad
Hibernateupdate
地址:http://blog.csdn.net/plpblue/article/details/9304459
public void synDevNameWithItil()
{Session session = null;Transaction tr = null;try{session = HibernateUtil.getSession();tr = session.beginTran
- 读《研磨设计模式》-代码笔记-观察者模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
import java.util.Observable;
import java.util.Observer;
/**
* “观
- 重置MySQL密码
chenhbc
mysql重置密码忘记密码
如果你也像我这么健忘,把MySQL的密码搞忘记了,经过下面几个步骤就可以重置了(以Windows为例,Linux/Unix类似):
1、关闭MySQL服务
2、打开CMD,进入MySQL安装目录的bin目录下,以跳过权限检查的方式启动MySQL
mysqld --skip-grant-tables
3、新开一个CMD窗口,进入MySQL
mysql -uroot
- 再谈系统论,控制论和信息论
comsci
设计模式生物能源企业应用领域模型
再谈系统论,控制论和信息论
偶然看
- oracle moving window size与 AWR retention period关系
daizj
oracle
转自: http://tomszrp.itpub.net/post/11835/494147
晚上在做11gR1的一个awrrpt报告时,顺便想调整一下AWR snapshot的保留时间,结果遇到了ORA-13541这样的错误.下面是这个问题的发生和解决过程.
SQL> select * from v$version;
BANNER
-------------------
- Python版B树
dieslrae
python
话说以前的树都用java写的,最近发现python有点生疏了,于是用python写了个B树实现,B树在索引领域用得还是蛮多了,如果没记错mysql的默认索引好像就是B树...
首先是数据实体对象,很简单,只存放key,value
class Entity(object):
'''数据实体'''
def __init__(self,key,value)
- C语言冒泡排序
dcj3sjt126com
算法
代码示例:
# include <stdio.h>
//冒泡排序
void sort(int * a, int len)
{
int i, j, t;
for (i=0; i<len-1; i++)
{
for (j=0; j<len-1-i; j++)
{
if (a[j] > a[j+1]) // >表示升序
- 自定义导航栏样式
dcj3sjt126com
自定义
-(void)setupAppAppearance
{
[[UILabel appearance] setFont:[UIFont fontWithName:@"FZLTHK—GBK1-0" size:20]];
[UIButton appearance].titleLabel.font =[UIFont fontWithName:@"FZLTH
- 11.性能优化-优化-JVM参数总结
frank1234
jvm参数性能优化
1.堆
-Xms --初始堆大小
-Xmx --最大堆大小
-Xmn --新生代大小
-Xss --线程栈大小
-XX:PermSize --永久代初始大小
-XX:MaxPermSize --永久代最大值
-XX:SurvivorRatio --新生代和suvivor比例,默认为8
-XX:TargetSurvivorRatio --survivor可使用
- nginx日志分割 for linux
HarborChung
nginxlinux脚本
nginx日志分割 for linux 默认情况下,nginx是不分割访问日志的,久而久之,网站的日志文件将会越来越大,占用空间不说,如果有问题要查看网站的日志的话,庞大的文件也将很难打开,于是便有了下面的脚本 使用方法,先将以下脚本保存为 cutlog.sh,放在/root 目录下,然后给予此脚本执行的权限
复制代码代码如下:
chmo
- Spring4新特性——泛型限定式依赖注入
jinnianshilongnian
springspring4泛型式依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- centOS安装GCC和G++
liuxihope
centosgcc
Centos支持yum安装,安装软件一般格式为yum install .......,注意安装时要先成为root用户。
按照这个思路,我想安装过程如下:
安装gcc:yum install gcc
安装g++: yum install g++
实际操作过程发现,只能有gcc安装成功,而g++安装失败,提示g++ command not found。上网查了一下,正确安装应该
- 第13章 Ajax进阶(上)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- How to determine BusinessObjects service pack and fix pack
blueoxygen
BO
http://bukhantsov.org/2011/08/how-to-determine-businessobjects-service-pack-and-fix-pack/
The table below is helpful. Reference
BOE XI 3.x
12.0.0.
y BOE XI 3.0 12.0.
x.
y BO
- Oracle里的自增字段设置
tomcat_oracle
oracle
大家都知道吧,这很坑,尤其是用惯了mysql里的自增字段设置,结果oracle里面没有的。oh,no 我用的是12c版本的,它有一个新特性,可以这样设置自增序列,在创建表是,把id设置为自增序列
create table t
(
id number generated by default as identity (start with 1 increment b
- Spring Security(01)——初体验
yang_winnie
springSecurity
Spring Security(01)——初体验
博客分类: spring Security
Spring Security入门安全认证
首先我们为Spring Security专门建立一个Spring的配置文件,该文件就专门用来作为Spring Security的配置